2,198 research outputs found

    A systematic study of two particle correlations from NA49 at CERN SPS

    Full text link
    A systematic study of two particle correlations measured by the NA49 experiment is summarized. Radii from Bose Einstein interferometry have been determined separately in different parts of phase space, for different collision systems and at different incident beam energies. Moreover, first results of a new method of accessing space-time asymmetries in the emission of particles by means of non identical particle correlations are presented.Comment: 4 pages 3 figures publ. in proc. of QM99, Torino It Nuclear Physics

    Efficient bipartite quantum state purification in arbitrary dimensional Hilbert spaces

    Get PDF
    A new purification scheme is proposed which applies to arbitrary dimensional bipartite quantum systems. It is based on the repeated application of a special class of nonlinear quantum maps and a single, local unitary operation. This special class of nonlinear quantum maps is generated in a natural way by a hermitian generalized XOR-gate. The proposed purification scheme offers two major advantages, namely it does not require local depolarization operations at each step of the purification procedure and it purifies more efficiently than other know purification schemes.Comment: This manuscript is based on results of our previous manuscript 'Generalized quantum XOR-gate for quantum teleportation and state purification in arbitrary dimensional Hilbert spaces

    Wave Solutions of Evolution Equations and Hamiltonian Flows on Nonlinear Subvarieties of Generalized Jacobians

    Full text link
    The algebraic-geometric approach is extended to study solutions of N-component systems associated with the energy dependent Schrodinger operators having potentials with poles in the spectral parameter, in connection with Hamiltonian flows on nonlinear subvariaties of Jacobi varieties. The systems under study include the shallow water equation and Dym type equation. The classes of solutions are described in terms of theta-functions and their singular limits by using new parameterizations. A qualitative description of real valued solutions is provided

    Controlling quantum systems by embedded dynamical decoupling schemes

    Full text link
    A dynamical decoupling method is presented which is based on embedding a deterministic decoupling scheme into a stochastic one. This way it is possible to combine the advantages of both methods and to increase the suppression of undesired perturbations of quantum systems significantly even for long interaction times. As a first application the stabilization of a quantum memory is discussed which is perturbed by one-and two-qubit interactions

    Non-Markovian generalization of the Lindblad theory of open quantum systems

    Full text link
    A systematic approach to the non-Markovian quantum dynamics of open systems is given by the projection operator techniques of nonequilibrium statistical mechanics. Combining these methods with concepts from quantum information theory and from the theory of positive maps, we derive a class of correlated projection superoperators that take into account in an efficient way statistical correlations between the open system and its environment. The result is used to develop a generalization of the Lindblad theory to the regime of highly non-Markovian quantum processes in structured environments.Comment: 10 pages, 1 figure, replaced by published versio

    On Soliton-type Solutions of Equations Associated with N-component Systems

    Full text link
    The algebraic geometric approach to NN-component systems of nonlinear integrable PDE's is used to obtain and analyze explicit solutions of the coupled KdV and Dym equations. Detailed analysis of soliton fission, kink to anti-kink transitions and multi-peaked soliton solutions is carried out. Transformations are used to connect these solutions to several other equations that model physical phenomena in fluid dynamics and nonlinear optics.Comment: 43 pages, 16 figure

    Continuous macroscopic limit of a discrete stochastic model for interaction of living cells

    Get PDF
    In the development of multiscale biological models it is crucial to establish a connection between discrete microscopic or mesoscopic stochastic models and macroscopic continuous descriptions based on cellular density. In this paper a continuous limit of a two-dimensional Cellular Potts Model (CPM) with excluded volume is derived, describing cells moving in a medium and reacting to each other through both direct contact and long range chemotaxis. The continuous macroscopic model is obtained as a Fokker-Planck equation describing evolution of the cell probability density function. All coefficients of the general macroscopic model are derived from parameters of the CPM and a very good agreement is demonstrated between CPM Monte Carlo simulations and numerical solution of the macroscopic model. It is also shown that in the absence of contact cell-cell interactions, the obtained model reduces to the classical macroscopic Keller-Segel model. General multiscale approach is demonstrated by simulating spongy bone formation from loosely packed mesenchyme via the intramembranous route suggesting that self-organizing physical mechanisms can account for this developmental process.Comment: 4 pages, 3 figure

    Majorization criterion for distillability of a bipartite quantum state

    Full text link
    Bipartite quantum states are classified into three categories: separable states, bound entangled states, and free entangled states. It is of great importance to characterize these families of states for the development of quantum information science. In this paper, I show that the separable states and the bound entangled states have a common spectral property. More precisely, I prove that for undistillable -- separable and bound entangled -- states, the eigenvalue vector of the global system is majorized by that of the local system. This result constitutes a new sufficient condition for distillability of bipartite quantum states. This is achieved by proving that if a bipartite quantum state satisfies the reduction criterion for distillability, then it satisfies the majorization criterion for separability.Comment: 4 pages, no figures, REVTEX. A new lemma (Lemma 2) added. To appear in Physical Review Letter

    Thermal entanglement witness for materials with variable local spin lengths

    Get PDF
    We show that the thermal entanglement in a spin system using only magnetic susceptibility measurements is restricted to the insulator materials. We develop a generalization of the thermal entanglement witness that allows us to get information about the system entanglement with variable local spin lengths that can be used experimentally in conductor or insulator materials. As an application, we study thermal entanglement for the half-filled Hubbard model for linear, square and cubic clusters. We note that it is the itinerancy of electrons that favors the entanglement. Our results suggest a weak dependence between entanglement and external spin freedom degrees.Comment: 4 pages, 3 figure
    corecore