685 research outputs found
Problems With Complex Actions
We consider Euclidean functional integrals involving actions which are not
exclusively real. This situation arises, for example, when there are -odd
terms in the the Minkowski action. Writing the action in terms of only real
fields (which is always possible), such terms appear as explicitly imaginary
terms in the Euclidean action. The usual quanization procedure which involves
finding the critical points of the action and then quantizing the spectrum of
fluctuations about these critical points fails. In the case of complex actions,
there do not exist, in general, any critical points of the action on the space
of real fields, the critical points are in general complex. The proper
definition of the function integral then requires the analytic continuation of
the functional integration into the space of complex fields so as to pass
through the complex critical points according to the method of steepest
descent. We show a simple example where this procedure can be carried out
explicitly. The procedure of finding the critical points of the real part of
the action and quantizing the corresponding fluctuations, treating the
(exponential of the) complex part of the action as a bounded integrable
function is shown to fail in our explicit example, at least perturbatively.Comment: 6+epsilon pages, no figures, presented at Theory CANADA
Conformal Spinning Quantum Particles in Complex Minkowski Space as Constrained Nonlinear Sigma Models in U(2,2) and Born's Reciprocity
We revise the use of 8-dimensional conformal, complex (Cartan) domains as a
base for the construction of conformally invariant quantum (field) theory,
either as phase or configuration spaces. We follow a gauge-invariant Lagrangian
approach (of nonlinear sigma-model type) and use a generalized Dirac method for
the quantization of constrained systems, which resembles in some aspects the
standard approach to quantizing coadjoint orbits of a group G. Physical wave
functions, Haar measures, orthonormal basis and reproducing (Bergman) kernels
are explicitly calculated in and holomorphic picture in these Cartan domains
for both scalar and spinning quantum particles. Similarities and differences
with other results in the literature are also discussed and an extension of
Schwinger's Master Theorem is commented in connection with closure relations.
An adaptation of the Born's Reciprocity Principle (BRP) to the conformal
relativity, the replacement of space-time by the 8-dimensional conformal domain
at short distances and the existence of a maximal acceleration are also put
forward.Comment: 33 pages, no figures, LaTe
Seeking an Even-Parity Mass Term for 3-D Gauge Theory
Mass-gap calculations in three-dimensional gauge theories are discussed. Also
we present a Chern--Simons-like mass-generating mechanism which preserves
parity and is realized non-perturbatively.Comment: 11 pages, revte
On plane wave and vortex-like solutions of noncommutative Maxwell-Chern-Simons theory
We investigate the spectrum of the gauge theory with Chern-Simons term on the
noncommutative plane, a modification of the description of the Quantum Hall
fluid recently proposed by Susskind. We find a series of the noncommutative
massive ``plane wave'' solutions with polarization dependent on the magnitude
of the wave-vector. The mass of each branch is fixed by the quantization
condition imposed on the coefficient of the noncommutative Chern-Simons term.
For the radially symmetric ansatz a vortex-like solution is found and
investigated. We derive a nonlinear difference equation describing these
solutions and we find their asymptotic form. These excitations should be
relevant in describing the Quantum Hall transitions between plateaus and the
end transition to the Hall Insulator.Comment: 17 pages, LaTeX (JHEP), 1 figure, added references, version accepted
to JHE
The magnetic mass of transverse gluon, the B-meson weak decay vertex and the triality symmetry of octonion
With an assumption that in the Yang-Mills Lagrangian, a left-handed fermion
and a right-handed fermion both expressed as quaternion make an octonion which
possesses the triality symmetry, I calculate the magnetic mass of the
transverse self-dual gluon from three loop diagram, in which a heavy quark pair
is created and two self-dual gluons are interchanged.
The magnetic mass of the transverse gluon depends on the mass of the pair
created quarks, and in the case of charmed quark pair creation, the magnetic
mass becomes approximately equal to at MeV. A possible time-like magnetic gluon mass
from two self-dual gluon exchange is derived, and corrections in the B-meson
weak decay vertices from the two self-dual gluon exchange are also evaluated.Comment: 22 pages, 9 figure
Entangled two cavity modes preparation via a two-photon process
We propose a scheme for entangling two field modes in two high-Q optical
cavities. Making use of a virtual two-photon process, our scheme achieves
maximally entangled states without any real transitions of atomic internal
states, hence it is immune to the atomic decay.Comment: 4 pages, latex, 7 figure
On One-Loop Gap Equations for the Magnetic Mass in d=3 Gauge Theory
Recently several workers have attempted determinations of the so-called
magnetic mass of d=3 non-Abelian gauge theories through a one-loop gap
equation, using a free massive propagator as input. Self-consistency is
attained only on-shell, because the usual Feynman-graph construction is
gauge-dependent off-shell. We examine two previous studies of the pinch
technique proper self-energy, which is gauge-invariant at all momenta, using a
free propagator as input, and show that it leads to inconsistent and unphysical
result. In one case the residue of the pole has the wrong sign (necessarily
implying the presence of a tachyonic pole); in the second case the residue is
positive, but two orders of magnitude larger than the input residue, which
shows that the residue is on the verge of becoming ghostlike. This happens
because of the infrared instability of d=3 gauge theory. A possible alternative
one-loop determination via the effective action also fails. The lesson is that
gap equations must be considered at least at two-loop level.Comment: 21 pages, LaTex, 2 .eps figure
Resummation scheme for 3d Yang-Mills and the two-loop magnetic mass for hot gauge theories
Perturbation theory for non-Abelian gauge theories at finite temperature is
plagued by infrared divergences caused by magnetic soft modes ,
which correspond to the fields of a 3d Yang-Mills theory. We revisit a gauge
invariant resummation scheme to solve this problem by self-consistent mass
generation using an auxiliary scalar field, improving over previous attempts in
two respects. First, we generalise earlier SU(2) treatments to SU(N). Second,
we obtain a gauge independent two-loop gap equation, correcting an error in the
literature. The resulting two-loop approximation to the magnetic mass
represents a correction to the leading one-loop value, indicating a
reasonable convergence of the resummation.Comment: 16 pages, 3 figure
The Fuzzy Disc
We introduce a finite dimensional matrix model approximation to the algebra
of functions on a disc based on noncommutative geometry. The algebra is a
subalgebra of the one characterizing the noncommutative plane with a * product
and depends on two parameters N and theta. It is composed of functions which
decay exponentially outside a disc. In the limit in which the size of the
matrices goes to infinity and the noncommutativity parameter goes to zero the
disc becomes sharper. We introduce a Laplacian defined on the whole algebra and
calculate its eigenvalues. We also calculate the two--points correlation
function for a free massless theory (Green's function). In both cases the
agreement with the exact result on the disc is very good already for relatively
small matrices. This opens up the possibility for the study of field theories
on the disc with nonperturbative methods. The model contains edge states, a
fact studied in a similar matrix model independently introduced by
Balachandran, Gupta and Kurkcuoglu.Comment: 17 pages, 8 figures, references added and correcte
- …
