16,479 research outputs found

    Gamow-Teller strength distributions in Fe and Ni stable isotopes

    Get PDF
    We study Gamow-Teller strength distributions in some selected nuclei of particular Astrophysical interest within the iron mass region. The theoretical framework is based on a proton-neutron Quasiparticle Random Phase Approximation built on a deformed selfconsistent mean field basis obtained from two-body density-dependent Skyrme forces. We compare our results to available experimental information obtained from (n,p) and (p,n) charge exchange reactions.Comment: 11 pages, 3 figure

    Momentum distributions from three-body decaying 9Be and 9B resonances

    Get PDF
    The complex-rotated hyperspherical adiabatic method is used to study the decay of low-lying 9^9Be and 9^9B resonances into α\alpha, α\alpha and nn or pp. We consider six low-lying resonances of 9^9Be (1/2±1/2^\pm, 3/2±3/2^\pm and 5/2±5/2^\pm) and one resonance of 9^9B (5/25/2^-) to compare with. The properties of the resonances at large distances are decisive for the momentum distributions of the three decaying fragments. Systematic detailed energy correlations of Dalitz plots are presented.Comment: 4 pages, 2 figures. Proceedings of the SOTANCP2 conference held in Brussels in May 201

    Structure and three-body decay of 9^9Be resonances

    Get PDF
    The complex-rotated hyperspherical adiabatic method is used to study the decay of low-lying 9^9Be resonances into one neutron and two α\alpha-particles. We investigate the six resonances above the break-up threshold and below 6 MeV: 1/2±1/2^\pm, 3/2±3/2^\pm and 5/2±5/2^\pm. The short-distance properties of each resonance are studied, and the different angular momentum and parity configurations of the 8^8Be and 5^5He two-body substructures are determined. We compute the branching ratio for sequential decay via the 8^8Be ground state which qualitatively is consistent with measurements. We extract the momentum distributions after decay directly into the three-body continuum from the large-distance asymptotic structures. The kinematically complete results are presented as Dalitz plots as well as projections on given neutron and α\alpha-energy. The distributions are discussed and in most cases found to agree with available experimental data.Comment: 12 pages, 10 figures. To appear in Physical Review

    Algorithmic quantum simulation of memory effects

    Get PDF
    We propose a method for the algorithmic quantum simulation of memory effects described by integrodifferential evolution equations. It consists in the systematic use of perturbation theory techniques and a Markovian quantum simulator. Our method aims to efficiently simulate both completely positive and nonpositive dynamics without the requirement of engineering non-Markovian environments. Finally, we find that small error bounds can be reached with polynomially scaling resources, evaluated as the time required for the simulation

    Controlled nucleation of topological defects in the stripe domain patterns of Lateral multilayers with Perpendicular Magnetic Anisotropy: competition between magnetostatic, exchange and misfit interactions

    Full text link
    Magnetic lateral multilayers have been fabricated on weak perpendicular magnetic anisotropy amorphous Nd-Co films in order to perform a systematic study on the conditions for controlled nucleation of topological defects within their magnetic stripe domain pattern. A lateral thickness modulation of period ww is defined on the nanostructured samples that, in turn, induces a lateral modulation of both magnetic stripe domain periods λ\lambda and average in-plane magnetization component MinplaneM_{inplane}. Depending on lateral multilayer period and in-plane applied field, thin and thick regions switch independently during in-plane magnetization reversal and domain walls are created within the in-plane magnetization configuration coupled to variable angle grain boundaries and disclinations within the magnetic stripe domain patterns. This process is mainly driven by the competition between rotatable anisotropy (that couples the magnetic stripe pattern to in-plane magnetization) and in-plane shape anisotropy induced by the periodic thickness modulation. However, as the structural period ww becomes comparable to magnetic stripe period λ\lambda, the nucleation of topological defects at the interfaces between thin and thick regions is hindered by a size effect and stripe domains in the different thickness regions become strongly coupled.Comment: 10 pages, 7 figures, submitted to Physical Review
    corecore