1,303 research outputs found

    Neutron Acceleration in Uniform Electromagnetic Fields

    Full text link
    The question as to whether neutron acceleration can occur in uniform electromagnetic fields is examined. Although such an effect has been predicted using the canonical equations of motion some doubt has been raised recently as to whether it is in principle observable for a spin 1/2 particle. To resolve this issue a gedanken experiment is proposed and analyzed using a wave packet construction for the neutron beam. By allowing arbitrary orientation for the neutron spin as well as for the electric and magnetic fields a non vanishing acceleration of the center of the neutron wave packet is found which confirms the predictions of the canonical formalism.Comment: 11 page

    Gravitational Phase Operator and Cosmic Strings

    Get PDF
    A quantum equivalence principle is formulated by means of a gravitational phase operator which is an element of the Poincare group. This is applied to the spinning cosmic string which suggests that it may (but not necessarily) contain gravitational torsion. A new exact solution of the Einstein- Cartan-Sciama-Kibble equations for the gravitational field with torsion is obtained everywhere for a cosmic string with uniform energy density, spin density and flux. A novel effect due to the quantized gravitational field of the cosmic string on the wave function of a particle outside the string is used to argue that spacetime points are not meaningful in quantum gravity.Comment: 22 pages, to be published Phys. Rev. D. Some minor changes have been made and a reference has been added to the paper of D.V. Gal'tsov and P.S. Letelier, Phys. Rev. D 47 (1993) 4273, which first contained the metric (2.2) external to the cosmic string. The present paper extends this solution to a regular solution inside the string as wel

    Action principle formulation for motion of extended bodies in General Relativity

    Get PDF
    We present an action principle formulation for the study of motion of an extended body in General Relativity in the limit of weak gravitational field. This gives the classical equations of motion for multipole moments of arbitrary order coupling to the gravitational field. In particular, a new force due to the octupole moment is obtained. The action also yields the gravitationally induced phase shifts in quantum interference experiments due to the coupling of all multipole moments.Comment: Revised version derives Octupole moment force. Some clarifications and a reference added. To appear in Phys. Rev.

    Local contribution of a quantum condensate to the vacuum energy density

    Full text link
    We evaluate the local contribution g_[mu nu]L of coherent matter with lagrangian density L to the vacuum energy density. Focusing on the case of superconductors obeying the Ginzburg-Landau equation, we express the relativistic invariant density L in terms of low-energy quantities containing the pairs density. We discuss under which physical conditions the sign of the local contribution of the collective wave function to the vacuum energy density is positive or negative. Effects of this kind can play an important role in bringing about local changes in the amplitude of gravitational vacuum fluctuations - a phenomenon reminiscent of the Casimir effect in QED.Comment: LaTeX, 8 pages. Final journal versio

    Classical and Quantum Interaction of the Dipole

    Get PDF
    A unified and fully relativistic treatment of the interaction of the electric and magnetic dipole moments of a particle with the electromagnetic field is given. New forces on the particle due to the combined effect of electric and magnetic dipoles are obtained. Four new experiments are proposed, three of which would observe topological phase shifts.Comment: 10 pages, Latex/Revtex. Some minor errors have been correcte

    Global Topology and Local Violation of Discrete Symmetries

    Get PDF
    Cosmological models that are locally consistent with general relativity and the standard model in which an object transported around the universe undergoes P, C and CP transformations, are constructed. This leads to generalization of the gauge fields that describe electro-weak and strong interactions by enlarging the gauge groups to include anti-unitary transformations. Gedanken experiments show that if all interactions obey Einstein causality then P, C and CP cannot be violated in these models. But another model, which would violate charge superselection rule even for an isolated system, is allowed. It is suggested that the fundamental physical laws must have these discrete symmetries which are broken spontaneously, or they must be non causal.Comment: 12 pages, 1 figure, latex, Revtex. Charge conjugation which is physically implemented in a cosmology with the appropriate topology is described in more detail. Some minor errors are corrected. Shortened to meet the page limit of Physical Review Letters to which this paper was submitte

    Galilean non-invariance of geometric phase

    Full text link
    It is shown that geometric phase in non-relativistic quantum mechanics is not Galilean invariant.Comment: LaTeX, 6 pages, no figure

    Fatty acid signatures of the Indian mackerel Rastrelliger kanagurta (Cuvier)from the Arabian Sea along the Indian coast

    Get PDF
    The fatty acid profile of the Indian mackerel Rastrelliger kanagurta from the Arabian Sea was studied in relation to its maturation and spawning cycle. Among fatty acids, polyunsaturated fatty acids (PUFA) component was the highest (46.9%) followed by saturated fatty acids (SFA) and monounsaturated fatty acids (MUFA) at 41.8% and 11% respectively. No differences were observed between the period of low spawning activity in January and peak spawning activity in May. However significant (p<0.05) differences were observed with regard to sex where females had higher levels of SFA and MUFA while males had higher levels of PUFA. With regard to maturity stages, only females showed significant differences (p<0.05) in MUFA content with higher level in mature stages compared to immature stages. Docosahexaenoic acid (DHA) was the single largest component of PUFA. The absence of marked temperature differences in the Arabian Sea probably precludes seasonal effects on the levels of SFA, MUFA and PUFA in the Indian mackerel while variations of individual FA within these groups indicate lipid dynamics in relation to reproduction and feeding

    On the Interpretation of Energy as the Rate of Quantum Computation

    Full text link
    Over the last few decades, developments in the physical limits of computing and quantum computing have increasingly taught us that it can be helpful to think about physics itself in computational terms. For example, work over the last decade has shown that the energy of a quantum system limits the rate at which it can perform significant computational operations, and suggests that we might validly interpret energy as in fact being the speed at which a physical system is "computing," in some appropriate sense of the word. In this paper, we explore the precise nature of this connection. Elementary results in quantum theory show that the Hamiltonian energy of any quantum system corresponds exactly to the angular velocity of state-vector rotation (defined in a certain natural way) in Hilbert space, and also to the rate at which the state-vector's components (in any basis) sweep out area in the complex plane. The total angle traversed (or area swept out) corresponds to the action of the Hamiltonian operator along the trajectory, and we can also consider it to be a measure of the "amount of computational effort exerted" by the system, or effort for short. For any specific quantum or classical computational operation, we can (at least in principle) calculate its difficulty, defined as the minimum effort required to perform that operation on a worst-case input state, and this in turn determines the minimum time required for quantum systems to carry out that operation on worst-case input states of a given energy. As examples, we calculate the difficulty of some basic 1-bit and n-bit quantum and classical operations in an simple unconstrained scenario.Comment: Revised to address reviewer comments. Corrects an error relating to time-ordering, adds some additional references and discussion, shortened in a few places. Figures now incorporated into tex

    Relation between geometric phases of entangled bi-partite systems and their subsystems

    Full text link
    This paper focuses on the geometric phase of entangled states of bi-partite systems under bi-local unitary evolution. We investigate the relation between the geometric phase of the system and those of the subsystems. It is shown that (1) the geometric phase of cyclic entangled states with non-degenerate eigenvalues can always be decomposed into a sum of weighted non-modular pure state phases pertaining to the separable components of the Schmidt decomposition, though the same cannot be said in the non-cyclic case, and (2) the geometric phase of the mixed state of one subsystem is generally different from that of the entangled state even by keeping the other subsystem fixed, but the two phases are the same when the evolution operator satisfies conditions where each component in the Schmidt decomposition is parallel transported
    corecore