8 research outputs found

    Rectifying the output of vibrational piezoelectric energy harvester using quantum dots

    Get PDF
    Piezoelectric energy harvester scavenges mechanical vibrations and generates electricity. Researchers have strived to optimize the electromechanical structures and to design necessary external power management circuits, aiming to deliver high power and rectified outputs ready for serving as batteries. Complex deformation of the mechanical structure results in charges with opposite polarities appearing on same surface, leading to current loss in the attached metal electrode. External power management circuits such as rectifiers comprise diodes that consume power and have undesirable forward bias. To address the above issues, we devise a novel integrated piezoelectric energy harvesting device that is structured by stacking a layer of quantum dots (QDs) and a layer of piezoelectric material. We find that the QD can rectify electrical charges generated from the piezoelectric material because of its adaptable conductance to the electrochemical potentials of both sides of the QDs layer, so that electrical current causing energy loss on the same surface of the piezoelectric material can be minimized. The QDs layer has the potential to replace external rectification circuits providing a much more compact and less power-consumption solution

    Mycobacterium tuberculosis Transcriptional Adaptation, Growth Arrest and Dormancy Phenotype Development Is Triggered by Vitamin C

    Get PDF
    BACKGROUND: Tubercle bacilli are thought to persist in a dormant state during latent tuberculosis (TB) infection. Although little is known about the host factors that induce and maintain Mycobacterium tuberculosis (M. tb) within latent lesions, O(2) depletion, nutrient limitation and acidification are some of the stresses implicated in bacterial dormancy development/growth arrest. Adaptation to hypoxia and exposure to NO/CO is implemented through the DevRS/DosT two-component system which induces the dormancy regulon. METHODOLOGY/PRINCIPAL FINDINGS: Here we show that vitamin C (ascorbic acid/AA) can serve as an additional signal to induce the DevR regulon. Physiological levels of AA scavenge O(2) and rapidly induce the DevR regulon at an estimated O(2) saturation of <30%. The kinetics and magnitude of the response suggests an initial involvement of DosT and a sustained DevS-mediated response during bacterial adaptation to increasing hypoxia. In addition to inducing DevR regulon mechanisms, vitamin C induces the expression of selected genes previously shown to be responsive to low pH and oxidative stress, triggers bacterial growth arrest and promotes dormancy phenotype development in M. tb grown in axenic culture and intracellularly in THP-1 cells. CONCLUSIONS/SIGNIFICANCE: Vitamin C mimics multiple intracellular stresses and has wide-ranging regulatory effects on gene expression and physiology of M. tb which leads to growth arrest and a 'dormant' drug-tolerant phenotype, but in a manner independent of the DevRS/DosT system. The 'AA-dormancy infection model' offers a potential alternative to other models of non-replicating persistence of M. tb and may be useful for investigating host-'dormant' M. tb interactions. Our findings offer a new perspective on the role of nutritional factors in TB and suggest a possible role for vitamin C in TB

    Piezoelectric and ferroelectric materials and structures for energy harvesting applications

    Get PDF
    C. R. Bowen would like to acknowledge funding from the European Research Council under the European Union's Seventh Framework Programme (FP/2007–2013)/ERC Grant Agreement no. 320963 on Novel Energy Materials, Engineering Science and Integrated Systems (NEMESIS). P. M. Weaver would like to acknowledge funding through the European Metrology Research Programme (EMRP) Project ENG02 “Metrology for Energy Harvesting” and the UK National Measurement System. The EMRP is jointly funded by the EMRP participating countries within EURAMET and the European Union
    corecore