2,480 research outputs found
The muonic longitudinal shower profiles at production
In this paper the longitudinal profile of muon production along the shower
axis is studied. The characteristics of this distribution is investigated for
different primary masses, zenith angles, primary energies, and different high
energy hadronic models. It is found that the shape of this distribution
displays universal features similarly to what is known for the electromagnetic
profile. The relation between the muon production distribution and the
longitudinal electromagnetic evolution is also discussed
`Stringy' Newton-Cartan Gravity
We construct a "stringy" version of Newton-Cartan gravity in which the
concept of a Galilean observer plays a central role. We present both the
geodesic equations of motion for a fundamental string and the bulk equations of
motion in terms of a gravitational potential which is a symmetric tensor with
respect to the longitudinal directions of the string. The extension to include
a non-zero cosmological constant is given. We stress the symmetries and
(partial) gaugings underlying our construction. Our results provide a
convenient starting point to investigate applications of the AdS/CFT
correspondence based on the non-relativistic "stringy" Galilei algebra.Comment: 44 page
On massive gravitons in 2+1 dimensions
The Fierz-Pauli (FP) free field theory for massive spin 2 particles can be
extended, in a spacetime of (1+2) dimensions (3D), to a generally covariant
parity-preserving interacting field theory, in at least two ways. One is "new
massive gravity" (NMG), with an action that involves curvature-squared terms.
Another is 3D "bigravity", which involves non-linear couplings of the FP tensor
field to 3D Einstein-Hilbert gravity. We review the proof of the linearized
equivalence of both "massive 3D gravity" theories to FP theory, and we comment
on their similarities and differences.Comment: 6 pages, to appear in the proceedings of the Spanish Relativity
Meeting ERE2009, Bilbao; minor changes, reference adde
A new spin-2 self-dual model in
There are three self-dual models of massive particles of helicity +2 (or -2)
in . Each model is of first, second, and third-order in derivatives.
Here we derive a new self-dual model of fourth-order, \cL {SD}^{(4)}, which
follows from the third-order model (linearized topologically massive gravity)
via Noether embedment of the linearized Weyl symmetry. In fact, each self-dual
model can be obtained from the previous one \cL {SD}^{(i)} \to \cL
{SD}^{(i+1)}, i=1,2,3 by the Noether embedment of an appropriate gauge
symmetry, culminating in \cL {SD}^{(4)}. The new model may be identified with
the linearized version of \cL {HDTMG} = \epsilon^{\mu\nu\rho}
\Gamma_{\mu\gamma}^\epsilon (\p_\nu\Gamma_{\epsilon\rho}^\gamma +
(2/3)\Gamma_{\nu\delta}^\gamma \Gamma_{\rho\epsilon}^\delta) /8 m +
\sqrt{-g}(R_{\mu\nu} R^{\nu\mu} - 3 R^2/8) /2 m^2 . We also construct a master
action relating the third-order self-dual model to \cL {SD}^{(4)} by means of
a mixing term with no particle content which assures spectrum equivalence of
\cL {SD}^{(4)} to other lower-order self-dual models despite its pure higher
derivative nature and the absence of the Einstein-Hilbert action. The relevant
degrees of freedom of \cL {SD}^{(4)} are encoded in a rank-two tensor which
is symmetric, traceless and transverse due to trivial (non-dynamic) identities,
contrary to other spin-2 self-dual models. We also show that the Noether
embedment of the Fierz-Pauli theory leads to the new massive gravity of
Bergshoeff, Hohm and Townsend.Comment: 14 pages, no figures, typos fixed, reference (19) modifie
Some interesting features of new massive gravity
A proof that new massive gravity - the massive 3D gravity model proposed by
Bergshoeff, Hohm and Townsend (BHT) - is the only unitary system at the tree
level that can be constructed by augmenting planar gravity through the
curvature-squared terms, is presented. Two interesting gravitational properties
of the BHT model, namely, time dilation and time delay, which have no
counterpart in the usual Einstein 3D gravity, are analyzed as well.Comment: Submitted to Classical and Quantum Gravit
On the new massive gravity and AdS/CFT
Demanding the existence of a simple holographic -theorem, it is shown that
a general (parity preserving) theory of gravity in 2+1 dimensions involving
upto four derivative curvature invariants reduces to the new massive gravity
theory. We consider extending the theory including upto six derivative
curvature invariants. Black hole solutions are presented and consistency with
1+1 CFTs is checked. We present evidence that bulk unitarity is still in
conflict with a positive CFT central charge for generic choice of parameters.
However, for a special choice of parameters appearing in the four and six
derivative terms reduces the linearized equations to be two derivative, thereby
ameliorating the unitarity problem.Comment: 16 pages, 2 figures. v4: typo correcte
Critical and Non-Critical Einstein-Weyl Supergravity
We construct N=1 supersymmetrisations of some recently-proposed theories of
critical gravity, conformal gravity, and extensions of critical gravity in four
dimensions. The total action consists of the sum of three separately off-shell
supersymmetric actions containing Einstein gravity, a cosmological term and the
square of the Weyl tensor. For generic choices of the coefficients for these
terms, the excitations of the resulting theory around an AdS_4 background
describe massive spin-2 and massless spin-2 modes coming from the metric;
massive spin-1 modes coming from a vector field in the theory; and massless and
massive spin-3/2 modes (with two unequal masses) coming from the gravitino.
These assemble into a massless and a massive N=1 spin-2 multiplet. In critical
supergravity, the coefficients are tuned so that the spin-2 mode in the massive
multiplet becomes massless. In the supersymmetrised extensions of critical
gravity, the coefficients are chosen so that the massive modes lie in a
"window" of lowest energies E_0 such that these ghostlike fields can be
truncated by imposing appropriate boundary conditions at infinity, thus leaving
just positive-norm massless supergravity modes.Comment: 29 page
MARTA: A high-energy cosmic-ray detector concept with high-accuracy muon measurement
A new concept for the direct measurement of muons in air showers is
presented. The concept is based on resistive plate chambers (RPCs), which can
directly measure muons with very good space and time resolution. The muon
detector is shielded by placing it under another detector able to absorb and
measure the electromagnetic component of the showers such as a water-Cherenkov
detector, commonly used in air shower arrays. The combination of the two
detectors in a single, compact detector unit provides a unique measurement that
opens rich possibilities in the study of air showers.Comment: 11 page
- …
