1,248 research outputs found
Field induced changes in cycloidal spin ordering and coincidence between magnetic and electric anomalies in BiFeO3 multiferroic
The ZFC and FC magnetization dependence on temperature was measured for
BiFeO3 ceramics at the applied magnetic field up to H=10T in 2K-1000K range.
The antiferromagnetic order was detected from the hysteresis loops below the
Neel temperature TN=646K. In the low magnetic field range there is an anomaly
in M(H), probably due to the field-induced transition from circular cycloid to
the anharmonic cycloid. At high field limit we observe the field-induced
transition to the homogeneous spin order. From the M(H) dependence we deduce
that above the field Ha the spin cycloid becomes anharmonic which causes
nonlinear magnetization, and above the field Hc the cycloid vanishes and the
system again exhibits linear magnetization M(H). The anomalies in the electric
properties, which are manifested within the 640K-680K range, coincide to the
anomaly in the magnetization M(T) dependence, which occurs in the vicinity of
TN. We propose to ascribe this coincidence to the critical behaviour of the
chemical potential, related to the magnetic phase transition.Comment: 23 pages, 12 figure
Possible singlet to triplet pairing transition in NaxCoO2 H2O
We present precise measurements of the upper critical field (Hc2) in the
recently discovered cobalt oxide superconductor. We have found that the
critical field has an unusual temperature dependence; namely, there is an
abrupt change of the slope of Hc2(T) in a weak field regime. In order to
explain this result we have derived and solved Gor'kov equations on a
triangular lattice. Our experimental results may be interpreted in terms of the
field-induced transition from singlet to triplet superconductivity.Comment: 6 pages, 5 figures, revte
Adequacy of Maternal Iron Status Protects against Behavioral, Neuroanatomical, and Growth Deficits in Fetal Alcohol Spectrum Disorders
Fetal alcohol spectrum disorders (FASD) are the leading non-genetic cause of neurodevelopmental disability in children. Although alcohol is clearly teratogenic, environmental factors such as gravidity and socioeconomic status significantly modify individual FASD risk despite equivalent alcohol intake. An explanation for this variability could inform FASD prevention. Here we show that the most common nutritional deficiency of pregnancy, iron deficiency without anemia (ID), is a potent and synergistic modifier of FASD risk. Using an established rat model of third trimester-equivalent binge drinking, we show that ID significantly interacts with alcohol to impair postnatal somatic growth, associative learning, and white matter formation, as compared with either insult separately. For the associative learning and myelination deficits, the ID-alcohol interaction was synergistic and the deficits persisted even after the offsprings’ iron status had normalized. Importantly, the observed deficits in the ID-alcohol animals comprise key diagnostic criteria of FASD. Other neurobehaviors were normal, showing the ID-alcohol interaction was selective and did not reflect a generalized malnutrition. Importantly ID worsened FASD outcome even though the mothers lacked overt anemia; thus diagnostics that emphasize hematological markers will not identify pregnancies at-risk. This is the first direct demonstration that, as suggested by clinical studies, maternal iron status has a unique influence upon FASD outcome. While alcohol is unquestionably teratogenic, this ID-alcohol interaction likely represents a significant portion of FASD diagnoses because ID is more common in alcohol-abusing pregnancies than generally appreciated. Iron status may also underlie the associations between FASD and parity or socioeconomic status. We propose that increased attention to normalizing maternal iron status will substantially improve FASD outcome, even if maternal alcohol abuse continues. These findings offer novel insights into how alcohol damages the developing brain
Quantum noise and mixedness of a pumped dissipative non-linear oscillator
Evolutions of quantum noise, characterized by quadrature squeezing parameter
and Fano factor, and of mixedness, quantified by quantum von Neumann and linear
entropies, of a pumped dissipative non-linear oscillator are studied. The model
can describe a signal mode interacting with a thermal reservoir in a
parametrically pumped cavity with a Kerr non-linearity. It is discussed that
the initial pure states, including coherent states, Fock states, and finite
superpositions of coherent states evolve into the same steady mixed state as
verified by the quantum relative entropy and the Bures metric. It is shown
analytically and verified numerically that the steady state can be well
approximated by a nonclassical Gaussian state exhibiting quadrature squeezing
and sub-Poissonian statistics for the cold thermal reservoir. A rapid increase
is found in the mixedness, especially for the initial Fock states and
superpositions of coherent states, during a very short time interval, and then
for longer evolution times a decrease in the mixedness to the same, for all the
initial states, and relatively low value of the nonclassical Gaussian state.Comment: 10 pages, 12 figure
Gauge symmetry and W-algebra in higher derivative systems
The problem of gauge symmetry in higher derivative Lagrangian systems is
discussed from a Hamiltonian point of view. The number of independent gauge
parameters is shown to be in general {\it{less}} than the number of independent
primary first class constraints, thereby distinguishing it from conventional
first order systems. Different models have been considered as illustrative
examples. In particular we show a direct connection between the gauge symmetry
and the W-algebra for the rigid relativistic particle.Comment: 1+22 pages, 1 figure, LaTeX, v2; title changed, considerably expanded
version with new results, to appear in JHE
Measurement of the240Pu(n,f) cross-section at the CERN n-TOF facility: First results from EAR-2
The accurate knowledge of neutron cross-sections of a variety of plutonium isotopes and other minor
actinides, such as neptunium, americium and curium, is crucial for feasibility and performance studies of advanced
nuclear systems (Generation-IV reactors, Accelerator Driven Systems). In this context, the240Pu(n,f) cross-section
was measured with the time-of-flight technique at the CERN n-TOF facility at incident neutron energies ranging from
thermal to several MeV. The present measurement is the first to have been performed at n-TOF's newly commissioned
Experimental Area II (EAR-2), which is located at the end of an 18 m neutron beam-line and features a neutron fluence
that is 25-30 times higher with respect to the existing 185 m flight-path (EAR-1), as well as stronger suppression of
sample-induced backgrounds, due to the shorter times-of-flight involved. Preliminary results are presented. © 2015,
CERN. All rights reserved.Postprint (published version
Present Status and Future Programs of the n_TOF Experiment
This is an Open Access article distributed under the terms of the Creative Commons Attribution-Noncommercial License 3.0, which permits unrestricted use, distribution, and reproduction in any noncommercial medium, provided the original work is properly citedThe neutron time-of-flight facility n_TOF at CERN, Switzerland, operational since 2001, delivers neutrons using the Proton Synchrotron (PS) 20 GeV/c proton beam impinging on a lead spallation target. The facility combines a very high instantaneous neutron flux, an excellent time of flight resolution due to the distance between the experimental area and the production target (185 meters), a low intrinsic background and a wide range of neutron energies, from thermal to GeV neutrons. These characteristics provide a unique possibility to perform neutron-induced capture and fission cross-section measurements for applications in nuclear astrophysics and in nuclear reactor technology.The most relevant measurements performed up to now and foreseen for the future will be presented in this contribution. The overall efficiency of the experimental program and the range of possible measurements achievable with the construction of a second experimental area (EAR-2), vertically located 20 m on top of the n_TOF spallation target, might offer a substantial improvement in measurement sensitivities. A feasibility study of the possible realisation of the installation extension will be also presented
- …
