9,437 research outputs found

    New Phosphated Poly(methyl Methacrylate) Polymers for the Prevention of Denture-induced Microbial Infection: an In Vitro Study

    Get PDF
    Purpose: Poly(methyl methacrylate) (PMMA) has been widely used as a denture-base acrylic resin due to its excellent physical and mechanical properties. However, the material is highly prone to microbial fouling that often leads to Candida-associated denture stomatitis. Incorporation of phosphate groups into PMMA could facilitate adsorption of salivary antimicrobials and inhibit microbial adherence on the polymer surface. An in vitro study evaluated PMMA polymers containing varying amounts of phosphate group for their efficacy to inhibit Candida albicans adhesion, adsorb salivary histatin 5, and exhibit candidacidal activity. Methods: Six PMMA polymers containing 0%, 5%, 15%, 10%, 20%, and 25% of phosphate group were synthesized by bead (suspension) polymerization technique using mixtures of methyl methacrylate and methallyl phosphate as monomers. The efficacy of the polymers to inhibit the adherence of C. albicans was examined by using human saliva-coated polymer beads and radio-labeled C. albicans cells, as compared with that of PMMA. The potency of the phosphated PMMA polymers to adsorb histatin 5 was determined by measuring the radioactivity of the adsorbed labeled-peptide on the polymer surface. The candidacidal activity of the histatin 5-adsorbed polymers was assessed by using the fluorescence technique. The percent release of the fluorescent probe calcein from the C. albicans membrane caused by the disruption of the cell membrane was determined. The data were analyzed statistically by one-way ANOVA followed by Scheffé’s test (α = 0.05 and n = 6). Results: The presence of ≥15% phosphate content in PMMA significantly reduced the saliva-mediated adhesion of C. albicans. Phosphated PMMA polymers showed significantly enhanced adsorption of histatin 5 in a phosphate density-dependent manner. The candidacidal activity of the histatin 5-bound polymers increased significantly with the increase in the phosphate content of the polymer. Conclusion: Phosphated PMMA polymers have the potential to serve as novel denture-base resins, which may reduce C. albicans colonization and prevent denture stomatitis

    Massive neutrinos and magnetic fields in the early universe

    Get PDF
    Primordial magnetic fields and massive neutrinos can leave an interesting signal in the CMB temperature and polarization. We perform a systematic analysis of general perturbations in the radiation-dominated universe, accounting for any primordial magnetic field and including leading-order effects of the neutrino mass. We show that massive neutrinos qualitatively change the large-scale perturbations sourced by magnetic fields, but that the effect is much smaller than previously claimed. We calculate the CMB power spectra sourced by inhomogeneous primordial magnetic fields, from before and after neutrino decoupling, including scalar, vector and tensor modes, and consistently modeling the correlation between the density and anisotropic stress sources. In an appendix we present general series solutions for the possible regular primordial perturbations

    A Recipe for State Dependent Distributed Delay Differential Equations

    Full text link
    We use the McKendrick equation with variable ageing rate and randomly distributed maturation time to derive a state dependent distributed delay differential equation. We show that the resulting delay differential equation preserves non-negativity of initial conditions and we characterise local stability of equilibria. By specifying the distribution of maturation age, we recover state dependent discrete, uniform and gamma distributed delay differential equations. We show how to reduce the uniform case to a system of state dependent discrete delay equations and the gamma distributed case to a system of ordinary differential equations. To illustrate the benefits of these reductions, we convert previously published transit compartment models into equivalent distributed delay differential equations.Comment: 28 page

    Analysis of the flowability of cohesive powders using Distinct Element Method

    Get PDF
    Computer simulations using Distinct Element Method (DEM) have been carried out to investigate the effect of cohesion on the flowability of polydisperse particulate systems. For this purpose, two assemblies with different values of surface energy and made of 3000 spheres with the mechanical properties of glass beads were considered. The analysis of the flowability of the powders is presented in terms of the unconfined yield stress as a function of strain rate for different pre-consolidation loads. For values of the surface energy of 1.0 J/m2 and strain rates lower than 6 s− 1, the unconfined yield stress does not change significantly indicating a quasi-static behaviour of the particulate assemblies during the compression process. For larger strain rates, the unconfined yield stress varies with the power index of 1.2 of the strain rate. The influence of the pre-consolidating stress on the powder behaviour has also been investigated and a flow factor was obtained from the linear relationship between the unconfined yield stress and pre-consolidation stress. The computer simulations show qualitatively a good agreement with the experimental trends on highly cohesive powder flow behaviour
    corecore