1,083 research outputs found

    Signatures of rocky planet engulfment in HAT-P-4. Implications for chemical tagging studies

    Full text link
    Aims. To explore the possible chemical signature of planet formation in the binary system HAT-P-4, by studying abundance vs condensation temperature Tc trends. The star HAT-P-4 hosts a planet detected by transits while its stellar companion does not have any detected planet. We also study the Lithium content, which could shed light on the problem of Li depletion in exoplanet host stars. Conclusions. The exoplanet host star HAT-P-4 is found to be ~0.1 dex more metal rich than its companion, which is one of the highest differences in metallicity observed in similar systems. This could have important implications for chemical tagging studies, disentangling groups of stars with a common origin. We rule out a possible peculiar composition for each star as lambda Boo, delta Scuti or a Blue Straggler. The star HAT-P-4 is enhanced in refractory elements relative to volatile when compared to its stellar companion. Notably, the Lithium abundance in HAT-P-4 is greater than in its companion by ~0.3 dex, which is contrary to the model that explains the Lithium depletion by the presence of planets. We propose a scenario where, at the time of planet formation, the star HAT-P-4 locked the inner refractory material in planetesimals and rocky planets, and formed the outer gas giant planet at a greater distance. The refractories were then accreted onto the star, possibly due to the migration of the giant planet. This explains the higher metallicity, the higher Lithium content, and the negative Tc trend detected. A similar scenario was recently proposed for the solar twin star HIP 68468, which is in some aspects similar to HAT-P-4. We estimate a mass of at least Mrock ~ 10 Mearth locked in refractory material in order to reproduce the observed Tc trends and metallicity.Comment: 5 pages, 6 figures, A&A Letters accepte

    Multi-decadal trends in global terrestrial evapotranspiration and its components

    Get PDF
    Evapotranspiration (ET) is the process by which liquid water becomes water vapor and energetically this accounts for much of incoming solar radiation. If this ET did not occur temperatures would be higher, so understanding ET trends is crucial to predict future temperatures. Recent studies have reported prolonged declines in ET in recent decades, although these declines may relate to climate variability. Here, we used a well-validated diagnostic model to estimate daily ET during 1981–2012, and its three components: transpiration from vegetation (Et), direct evaporation from the soil (Es) and vaporization of intercepted rainfall from vegetation (Ei). During this period, ET over land has increased significantly (p < 0.01), caused by increases in Et and Ei, which are partially counteracted by Es decreasing. These contrasting trends are primarily driven by increases in vegetation leaf area index, dominated by greening. The overall increase in Et over land is about twofold of the decrease in Es. These opposing trends are not simulated by most Coupled Model Intercomparison Project phase 5 (CMIP5) models, and highlight the importance of realistically representing vegetation changes in earth system models for predicting future changes in the energy and water cycle

    Testing LSST dither strategies for Survey Uniformity and Large-Scale Structure Systematics

    Get PDF
    The Large Synoptic Survey Telescope (LSST) will survey the southern sky from 2022{2032 with unprecedented detail. Since the observing strategy can lead to artifacts in the data, we investigate the eects of telescope-pointing osets (called dithers) on the r-band coadded 5 depth yielded after the 10-year survey. We analyze this survey depth for several geometric patterns of dithers (e.g.,random, hexagonal lattice, spiral) with amplitude as large as the radius of the LSST eld-of-view, implemented on dierent timescales (per season, per night, per visit). Our results illustrate that per night and per visit dither assignments are more eective than per season. Also, we find that some dither geometries (e.g., hexagonal lattice) are particularly sensitive to the timescale on whichthe dithers are implemented, while others like random dithers perform well on all timescales. We then model the propagation of depth variations to articial uctuations in galaxy counts, which are a systematic for large-scale structure studies. We calculate the bias in galaxy counts caused by the observing strategy, accounting for photometric calibration uncertainties, dust extinction, and magnitude cuts; uncertainties in this bias limit our ability to account for structure induced by the observing strategy. We nd that after 10 years of the LSST survey, the best dither strategies lead to uncertainties in this bias smaller than the minimum statistical floor for a galaxy catalog as deep asr<27.5. A few of these strategies bring the uncertainties close to the statistical floor for r<25.7 after only one year of survey.Fil: Awan, Humna. Rutgers University; Estados UnidosFil: Gawiser, Eric. Rutgers University; Estados UnidosFil: Kurczynski, Peter. Rutgers University; Estados UnidosFil: Lynne Jones, R.. University of Washington; Estados UnidosFil: Zhan, Hu. Chinese Academy of Sciences; República de ChinaFil: Padilla, Nelson David. Pontificia Universidad Católica de Chile; ChileFil: Muñoz Arancibia, Alejandra M.. Pontificia Universidad Católica de Chile; ChileFil: Orsi, Alvaro. Centro de Estudios de Fisica del Cosmos de Aragon; EspañaFil: Cora, Sofia Alejandra. Universidad Nacional de la Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica la Plata; ArgentinaFil: Yoachim, Peter. University of Washington; Estados Unido

    The ALMA Frontier Fields Survey - IV. Lensing-corrected 1.1 mm number counts in Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223

    Get PDF
    [abridged] Characterizing the number counts of faint, dusty star-forming galaxies is currently a challenge even for deep, high-resolution observations in the FIR-to-mm regime. They are predicted to account for approximately half of the total extragalactic background light at those wavelengths. Searching for dusty star-forming galaxies behind massive galaxy clusters benefits from strong lensing, enhancing their measured emission while increasing spatial resolution. Derived number counts depend, however, on mass reconstruction models that properly constrain these clusters. We estimate the 1.1 mm number counts along the line of sight of three galaxy clusters, i.e. Abell 2744, MACSJ0416.1-2403 and MACSJ1149.5+2223, which are part of the ALMA Frontier Fields Survey. We perform detailed simulations to correct these counts for lensing effects. We use several publicly available lensing models for the galaxy clusters to derive the intrinsic flux densities of our sources. We perform Monte Carlo simulations of the number counts for a detailed treatment of the uncertainties in the magnifications and adopted source redshifts. We find an overall agreement among the number counts derived for the different lens models, despite their systematic variations regarding source magnifications and effective areas. Our number counts span ~2.5 dex in demagnified flux density, from several mJy down to tens of uJy. Our number counts are consistent with recent estimates from deep ALMA observations at a 3σ\sigma level. Below \approx 0.1 mJy, however, our cumulative counts are lower by \approx 1 dex, suggesting a flattening in the number counts. In our deepest ALMA mosaic, we estimate number counts for intrinsic flux densities \approx 4 times fainter than the rms level. This highlights the potential of probing the sub-10 uJy population in larger samples of galaxy cluster fields with deeper ALMA observations.Comment: 19 pages, 14 figures, 3 tables. Accepted for publication in A&

    Musical preferences and technologies: Contemporary material and symbolic distinctions criticised

    Get PDF
    Today how individuals interact with various cultural items is not perfectly consistent with theoretical frameworks of influential scholars on cultural consumption, such as Bourdieu (1984), Gans (1999), and Peterson and Simkus (1992). One such variation is in the ever increasing variety of technological modes to acquire and listen to music (Pinch and Bijsterveld, 2004). However, as a consequence of digital divides (van Dijk, 2006), technological items may not be distributed equally among social groups. At present, the value of status-making through a preference for different genres of music extends itself to different forms of consumption and ways of experiencing music. We are yet to fully understand the power these practices have on generating status. This article is therefore motivated by the need to integrate within quantitative frameworks of taste and cultural consumption, an analysis of individuals’ technological engagement. These two dimensions, integrated as components of musical practices, enhance our understanding of cultural boundaries across different social groups.The objective is to bridge a gap detected in the literature, addressing the following questions: Are technological modes to listen to music related to musical tastes

    Endogenous GABA controls oligodendrocyte lineage cell number, myelination, and CNS internode length

    Get PDF
    Adjusting the thickness and internodal length of the myelin sheath is a mechanism for tuning the conduction velocity of axons to match computational needs. Interactions between oligodendrocyte precursor cells (OPCs) and developing axons regulate the formation of myelin around axons. We now show, using organotypic cerebral cortex slices from mice expressing eGFP in Sox10-positive oligodendrocytes, that endogenously released GABA, acting on GABAA receptors, greatly reduces the number of oligodendrocyte lineage cells. The decrease in oligodendrocyte number correlates with a reduction in the amount of myelination but also an increase in internode length, a parameter previously thought to be set by the axon diameter or to be a property intrinsic to oligodendrocytes. Importantly, while TTX block of neuronal activity had no effect on oligodendrocyte lineage cell number when applied alone, it was able to completely abolish the effect of blocking GABAA receptors, suggesting that control of myelination by endogenous GABA may require a permissive factor to be released from axons. In contrast, block of AMPA/KA receptors had no effect on oligodendrocyte lineage cell number or myelination. These results imply that, during development, GABA can act as a local environmental cue to control myelination and thus influence the conduction velocity of action potentials within the CNS. GLIA 2017;65:309-321

    Obtención de vidrio a partir de residuos de la minería del estaño en Bolivia

    Get PDF
    Manufacturing of glass from tin mining tailings in Bolivia Tailings from mining activities in Bolivia represent an environmental problem. In the vicinity of the tin mines of Llallagua,Potosí department, there are large dumps and tailings. We present a study of the use of these wastes as raw materials for the manufacture of glass. This procedure aims to contribute to environmental remediation of mining areas through the vitrification, a process which offers an alternative for stabilization of hazardous waste. In addition, the marketing of the obtained product would provide an additional income to the mining areas. For this study three samples of mining waste, with grain size between sand and silt, were used. The chemical composition of these raw materials, determined by X-ray fluorescence, is granitic, with high contents of heavy metals. On the basis of its composition, glass were made from silica glass by adding CaCO3 and Na2CO3. The thermal cycle has been determined from TDA. Tg values of glass range from 626º to 709 °C. Leaching tests of the obtained glasses confirm their capacity to retain heavy metals

    VALES: IV. Exploring the transition of star formation efficiencies between normal and starburst galaxies using APEX/SEPIA Band-5 and ALMA at low redshift

    Full text link
    In this work we present new APEX/SEPIA Band-5 observations targeting the CO (J=2-1J=2\text{-}1) emission line of 24 Herschel-detected galaxies at z=0.10.2z=0.1-0.2. Combining this sample {with} our recent new Valpara\'iso ALMA Line Emission Survey (VALES), we investigate the star formation efficiencies (SFEs = SFR/MH2M_{\rm H_{2}}) of galaxies at low redshift. We find the SFE of our sample bridges the gap between normal star-forming galaxies and Ultra-Luminous Infrared Galaxies (ULIRGs), which are thought to be triggered by different star formation modes. Considering the SFE\rm SFE' as the SFR and the LCOL'_{\rm CO} ratio, our data show a continuous and smooth increment as a function of infrared luminosity (or star formation rate) with a scatter about 0.5 dex, instead of a steep jump with a bimodal behaviour. This result is due to the use of a sample with a much larger range of sSFR/sSFRms_{\rm ms} using LIRGs, with luminosities covering the range between normal and ULIRGs. We conclude that the main parameters controlling the scatter of the SFE in star-forming galaxies are the systematic uncertainty of the αCO\alpha_{\rm CO} conversion factor, the gas fraction and physical size.Comment: 9pages, 7 figures, 1 table, accepted for publication in MNRA

    The ALMA Frontier Fields Survey

    Get PDF
    CONTEXT: Dusty star-forming galaxies are among the most prodigious systems at high redshift (z > 1), characterized by high star-formation rates and huge dust reservoirs. The bright end of this population has been well characterized in recent years, but considerable uncertainties remain for fainter dusty star-forming galaxies, which are responsible for the bulk of star formation at high redshift and thus play a key role in galaxy growth and evolution. AIMS: In this first paper of our series, we describe our methods for finding high redshift faint dusty galaxies using millimeter observations with ALMA. METHODS: We obtained ALMA 1.1 mm mosaic images for three strong-lensing galaxy clusters from the Frontier Fields Survey, which constitute some of the best studied gravitational lenses to date. The ≈2′ × 2′ mosaics overlap with the deep HST WFC3/IR footprints and encompass the high magnification regions of each cluster for maximum intrinsic source sensitivity. The combination of extremely high ALMA sensitivity and the magnification power of these clusters allows us to systematically probe the sub-mJy population of dusty star-forming galaxies over a large surveyed area. RESULTS: We present a description of the reduction and analysis of the ALMA continuum observations for the galaxy clusters Abell 2744 (z = 0.308), MACS J0416.1-2403 (z = 0.396) and MACS J1149.5+2223 (z = 0.543), for which we reach observed rms sensitivities of 55, 59 and 71 μJy beam-1 respectively. We detect 12 dusty star-forming galaxies at S/N ≥ 5.0 across the three clusters, all of them presenting coincidence with near-infrared detected counterparts in the HST images. None of the sources fall close to the lensing caustics, thus they are not strongly lensed. The observed 1.1 mm flux densities for the total sample of galaxies range from 0.41 to 2.82 mJy, with observed effective radii spanning ≲0.̋05 to 0.̋37 ± 0.̋21 . The lensing-corrected sizes of the detected sources appear to be in the same range as those measured in brighter samples, albeit with possibly larger dispersion
    corecore