2,563 research outputs found
CO Line Emission from Compact Nuclear Starburst Disks Around Active Galactic Nuclei
There is substantial evidence for a connection between star formation in the
nuclear region of a galaxy and growth of the central supermassive black hole.
Furthermore, starburst activity in the region around an active galactic nucleus
(AGN) may provide the obscuration required by the unified model of AGN.
Molecular line emission is one of the best observational avenues to detect and
characterize dense, star-forming gas in galactic nuclei over a range of
redshift. This paper presents predictions for the carbon monoxide (CO) line
features from models of nuclear starburst disks around AGN. These small scale
(\la 100 pc), dense and hot starbursts have CO luminosities similar to
scaled-down ultra-luminous infrared galaxies and quasar host galaxies. Nuclear
starburst disks that exhibit a pc-scale starburst and could potentially act as
the obscuring torus show more efficient CO excitation and higher brightness
temperature ratios than those without such a compact starburst. In addition,
the compact starburst models predict strong absorption when J_{\mathrm{Upper}}
\ga 10, a unique observational signature of these objects. These findings
allow for the possibility that CO SLEDs could be used to determine if starburst
disks are responsible for the obscuration in z \la 1 AGN. Directly isolating
the nuclear CO line emission of such compact regions around AGN from
galactic-scale emission will require high resolution imaging or selecting AGN
host galaxies with weak galactic-scale star formation. Stacking individual CO
SLEDs will also be useful in detecting the predicted high- features.Comment: 27 pages, 5 figures, accepted by ApJ, updated to suit referee's
suggestion
Chiral and Continuum Extrapolation of Partially-Quenched Hadron Masses
Using the finite-range regularisation (FRR) of chiral effective field theory,
the chiral extrapolation formula for the vector meson mass is derived for the
case of partially-quenched QCD. We re-analyse the dynamical fermion QCD data
for the vector meson mass from the CP-PACS collaboration. A global fit,
including finite lattice spacing effects, of all 16 of their ensembles is
performed. We study the FRR method together with a naive polynomial approach
and find excellent agreement ~1% with the experimental value of M_rho from the
former approach. These results are extended to the case of the nucleon mass.Comment: 6 pages, Contribution to Lattice2005, PoS styl
Unified chiral analysis of the vector meson spectrum from lattice QCD
The chiral extrapolation of the vector meson mass calculated in
partially-quenched lattice simulations is investigated. The leading one-loop
corrections to the vector meson mass are derived for partially-quenched QCD. A
large sample of lattice results from the CP-PACS Collaboration is analysed,
with explicit corrections for finite lattice spacing artifacts. To incorporate
the effect of the opening decay channel as the chiral limit is approached, the
extrapolation is studied using a necessary phenomenological extension of chiral
effective field theory. This chiral analysis also provides a quantitative
estimate of the leading finite volume corrections. It is found that the
discretisation, finite-volume and partial quenching effects can all be very
well described in this framework, producing an extrapolated value of M_\rho in
excellent agreement with experiment. This procedure is also compared with
extrapolations based on polynomial forms, where the results are much less
enlightening.Comment: 30 pages, 13 fig
Superconducting Qubits Coupled to Nanoelectromechanical Resonators: An Architecture for Solid-State Quantum Information Processing
We describe the design for a scalable, solid-state
quantum-information-processing architecture based on the integration of
GHz-frequency nanomechanical resonators with Josephson tunnel junctions, which
has the potential for demonstrating a variety of single- and multi-qubit
operations critical to quantum computation. The computational qubits are
eigenstates of large-area, current-biased Josephson junctions, manipulated and
measured using strobed external circuitry. Two or more of these phase qubits
are capacitively coupled to a high-quality-factor piezoelectric
nanoelectromechanical disk resonator, which forms the backbone of our
architecture, and which enables coherent coupling of the qubits. The integrated
system is analogous to one or more few-level atoms (the Josephson junction
qubits) in an electromagnetic cavity (the nanomechanical resonator). However,
unlike existing approaches using atoms in electromagnetic cavities, here we can
individually tune the level spacing of the ``atoms'' and control their
``electromagnetic'' interaction strength. We show theoretically that quantum
states prepared in a Josephson junction can be passed to the nanomechanical
resonator and stored there, and then can be passed back to the original
junction or transferred to another with high fidelity. The resonator can also
be used to produce maximally entangled Bell states between a pair of Josephson
junctions. Many such junction-resonator complexes can assembled in a
hub-and-spoke layout, resulting in a large-scale quantum circuit. Our proposed
architecture combines desirable features of both solid-state and cavity quantum
electrodynamics approaches, and could make quantum information processing
possible in a scalable, solid-state environment.Comment: 20 pages, 14 separate low-resolution jpeg figure
Chiral and Continuum Extrapolation of Partially-Quenched Lattice Results
The vector meson mass is extracted from a large sample of partially quenched,
two-flavor lattice QCD simulations. For the first time, discretisation,
finite-volume and partial quenching artefacts are treated in a unified
framework which is consistent with the low-energy behaviour of QCD. This
analysis incorporates the leading infrared behaviour dictated by chiral
effective field theory. As the two-pion decay channel cannot be described by a
low-energy expansion alone, a highly-constrained model for the decay channel of
the rho-meson is introduced. The latter is essential for extrapolating lattice
results from the quark-mass regime where the rho is observed to be a physical
bound state.Comment: 9 pages, 3 figures; revised version appearing in PL
Nonlinear modal coupling in a high-stress doubly-clamped nanomechanical resonator
We present results from a study of the nonlinear intermodal coupling between
different flexural vibrational modes of a single high-stress, doubly-clamped
silicon nitride nanomechanical beam. The measurements were carried out at 100
mK and the beam was actuated using the magnetomotive technique. We observed the
nonlinear behavior of the modes individually and also measured the coupling
between them by driving the beam at multiple frequencies. We demonstrate that
the different modes of the resonator are coupled to each other by the
displacement induced tension in the beam, which also leads to the well known
Duffing nonlinearity in doubly-clamped beams.Comment: 15 pages, 7 figure
Proof that the Hydrogen-antihydrogen Molecule is Unstable
In the framework of nonrelativistic quantum mechanics we derive a necessary
condition for four Coulomb charges ,
where all masses are assumed finite, to form the stable system. The obtained
stability condition is physical and is expressed through the required minimal
ratio of Jacobi masses. In particular this provides the rigorous proof that the
hydrogen-antihydrogen molecule is unstable. This is the first result of this
sort for four particles.Comment: Submitted to Phys.Rev.Let
- …
