9,078 research outputs found
A Variational Principle for the Asymptotic Speed of Fronts of the Density Dependent Diffusion--Reaction Equation
We show that the minimal speed for the existence of monotonic fronts of the
equation with , and in
derives from a variational principle. The variational principle allows
to calculate, in principle, the exact speed for arbitrary . The case
when is included as an extension of the results.Comment: Latex, postcript figure availabl
Techniques for carrying out radiative transfer calculations for the Martian atmospheric dust
A description is given of the modification of a theory on the reflectance of particulate media so as to apply it to analysis of the infrared spectra obtained by the IRIS instrument on Mariner 9. With the aid of this theory and the optical constants of muscovite mica, quartz, andesite, anorthosite, diopside pyroxenite, and dunite, modeling calculations were made to refine previous estimates of the mineralogical composition of the Martian dust particles. These calculations suggest that a feldspar rich mixture is a very likely composition for the dust particles. The optical constants used for anorthosite and diopside pyroxenite were derived during this program from reflectance measurements. Those for the mica were derived from literature reflectance data. Finally, a computer program was written to invert the measured radiance data so as to obtain the absorption coefficient spectrum which should then be independent of the temperature profile and gaseous component effects
The effect of a cutoff on pushed and bistable fronts of the reaction diffusion equation
We give an explicit formula for the change of speed of pushed and bistable
fronts of the reaction diffusion equation when a small cutoff is applied at the
unstable or metastable equilibrium point. The results are valid for arbitrary
reaction terms and include the case of density dependent diffusion.Comment: 7 page
The ILR School at Fifty: Voices of the Faculty, Alumni & Friends (Full Text)
A collection of reflections on the first fifty years of the School of Industrial and Labor Relations at Cornell University. Compiled by Robert B. McKersie, J. Gormly Miller, Robert L. Aronson, and Robert R. Julian. Edited by Elaine Gruenfeld Goldberg. It was the hope of the compilers that the reflections contained in this book would both kindle memories of the school and stimulate interest on the part of future generations of ILRies who have not yet shared in its special history.
Dedicated to the Memory of J. Gormly Miller, 1914-1995.
Copyright 1996 by Cornell University. All rights reserved
Neutron diffraction in a model itinerant metal near a quantum critical point
Neutron diffraction measurements on single crystals of Cr1-xVx (x=0, 0.02,
0.037) show that the ordering moment and the Neel temperature are continuously
suppressed as x approaches 0.037, a proposed Quantum Critical Point (QCP). The
wave vector Q of the spin density wave (SDW) becomes more incommensurate as x
increases in accordance with the two band model. At xc=0.037 we have found
temperature dependent, resolution limited elastic scattering at 4
incommensurate wave vectors Q=(1+/-delta_1,2, 0, 0)*2pi/a, which correspond to
2 SDWs with Neel temperatures of 19 K and 300 K. Our neutron diffraction
measurements indicate that the electronic structure of Cr is robust, and that
tuning Cr to its QCP results not in the suppression of antiferromagnetism, but
instead enables new spin ordering due to novel nesting of the Fermi surface of
Cr.Comment: Submitted as a part of proceedings of LT25 (Amsterdam 2008
Recommended from our members
Native and invasive inoculation sources modify fungal community assembly and biomass production of a chaparral shrub
Feedbacks between plants and surrounding soil microbes can contribute to the establishment and persistence of invasive annual grasses as well as limit the success of restoration efforts. In this study, we aim to understand how three sources of soil inocula – native, invasive (from under Bromus diandrus) and sterile – affect the growth response and fungal community composition in the roots of a chaparral shrub, Adenostoma fasciculatum. We grew A. fasciculatum from seed in a greenhouse with each inoculum source and harvested at six months. We measured above- and below-ground biomass, arbuscular mycorrhizal fungal (AMF) colonization and conducted targeted-amplicon sequencing of the 18S and ITS2 loci to characterize AMF and general fungal community composition, respectively. Native inoculum resulted in roots with richer communities of some groups of AMF and non-AMF symbionts, when compared to roots grown with invasive or sterile inoculum. Seedlings grown with invasive and native inoculum did not have different growth responses, but both produced more biomass than a sterile control. These findings suggest that inoculation with soil from native species can increase the diversity of multiple groups of fungal symbionts and inoculation with live soil (invasive or native) can increase seedling biomass. Moreover, future work would benefit from assessing if a more diverse community of fungal symbionts increases seedling survival when planted in field restoration sites
Erosion waves: transverse instabilities and fingering
Two laboratory scale experiments of dry and under-water avalanches of
non-cohesive granular materials are investigated. We trigger solitary waves and
study the conditions under which the front is transversally stable. We show the
existence of a linear instability followed by a coarsening dynamics and finally
the onset of a fingering pattern. Due to the different operating conditions,
both experiments strongly differ by the spatial and time scales involved.
Nevertheless, the quantitative agreement between the stability diagram, the
wavelengths selected and the avalanche morphology reveals a common scenario for
an erosion/deposition process.Comment: 4 pages, 6 figures, submitted to PR
Development of a theory of the spectral reflectance of minerals, part 4
A theory of the spectral reflectance or emittance of particulate minerals was developed. The theory is expected to prove invaluable in the interpretation of the remote infrared spectra of planetary surfaces
Validity of the Brunet-Derrida formula for the speed of pulled fronts with a cutoff
We establish rigorous upper and lower bounds for the speed of pulled fronts
with a cutoff. We show that the Brunet-Derrida formula corresponds to the
leading order expansion in the cut-off parameter of both the upper and lower
bounds. For sufficiently large cut-off parameter the Brunet-Derrida formula
lies outside the allowed band determined from the bounds. If nonlinearities are
neglected the upper and lower bounds coincide and are the exact linear speed
for all values of the cut-off parameter.Comment: 8 pages, 3 figure
- …
