715 research outputs found
Photon Subtraction by Many-Body Decoherence
We experimentally and theoretically investigate the scattering of a photonic
quantum field from another stored in a strongly interacting atomic Rydberg
ensemble. Considering the many-body limit of this problem, we derive an exact
solution to the scattering-induced spatial decoherence of multiple stored
photons, allowing for a rigorous understanding of the underlying dissipative
quantum dynamics. Combined with our experiments, this analysis reveals a
correlated coherence-protection process in which the scattering from one
excitation can shield all others from spatial decoherence. We discuss how this
effect can be used to manipulate light at the quantum level, providing a robust
mechanism for single-photon subtraction, and experimentally demonstrate this
capability
The observable effects of a photospheric component on GRB's and XRF's prompt emission spectrum
A thermal radiative component is likely to accompany the first stages of the
prompt emission of Gamma-ray bursts (GRB's) and X-ray flashes (XRF's). We
analyze the effect of such a component on the observable spectrum, assuming
that the observable effects are due to a dissipation process occurring below or
near the thermal photosphere. We consider both the internal shock model and a
'slow heating' model as possible dissipation mechanisms. For comparable energy
densities in the thermal and the leptonic component, the dominant emission
mechanism is Compton scattering. This leads to a nearly flat energy spectrum
(\nu F_\nu \propto \nu^0) above the thermal peak at ~10-100 keV and below
10-100 MeV, for a wide range of optical depths 0.03 <~ \tau_{\gamma e} <~ 100,
regardless of the details of the dissipation mechanism or the strength of the
magnetic field. At lower energies steep slopes are expected, while above 100
MeV the spectrum depends on the details of the dissipation process. For higher
values of the optical depth, a Wien peak is formed at 100 keV - 1 MeV, and no
higher energy component exists. For any value of \tau_{\gamma e}, the number of
pairs produced does not exceed the baryon related electrons by a factor larger
than a few. We conclude that dissipation near the thermal photosphere can
naturally explain both the steep slopes observed at low energies and a flat
spectrum above 10 keV, thus providing an alternative scenario to the optically
thin synchrotron - SSC model.Comment: Discussion added on the results of Baring & Braby (2004); Accepted
for publication in Ap.
Time dependent numerical model for the emission of radiation from relativistic plasma
We describe a numerical model constructed for the study of the emission of
radiation from relativistic plasma under conditions characteristic, e.g., to
gamma-ray bursts (GRB's) and active galactic nuclei (AGN's). The model solves
self consistently the kinetic equations for e^\pm and photons, describing
cyclo-synchrotron emission, direct Compton and inverse Compton scattering, pair
production and annihilation, including the evolution of high energy
electromagnetic cascades. The code allows calculations over a wide range of
particle energies, spanning more than 15 orders of magnitude in energy and time
scales. Our unique algorithm, which enables to follow the particle
distributions over a wide energy range, allows to accurately derive spectra at
high energies, >100 \TeV. We present the kinetic equations that are being
solved, detailed description of the equations describing the various physical
processes, the solution method, and several examples of numerical results.
Excellent agreement with analytical results of the synchrotron-SSC model is
found for parameter space regions in which this approximation is valid, and
several examples are presented of calculations for parameter space regions
where analytic results are not available.Comment: Minor changes; References added, discussion on observational status
added. Accepted for publication in Ap.
Distinct immune signatures in directly treated and distant tumors result from TLR adjuvants and focal ablation.
Both adjuvants and focal ablation can alter the local innate immune system and trigger a highly effective systemic response. Our goal is to determine the impact of these treatments on directly treated and distant disease and the mechanisms for the enhanced response obtained by combinatorial treatments. Methods: We combined RNA-sequencing, flow cytometry and TCR-sequencing to dissect the impact of immunotherapy and of immunotherapy combined with ablation on local and systemic immune components. Results: With administration of a toll-like receptor agonist agonist (CpG) alone or CpG combined with same-site ablation, we found dramatic differences between the local and distant tumor environments, where the directly treated tumors were skewed to high expression of F4/80, Cd11b and Tnf and the distant tumors to enhanced Cd11c, Cd3 and Ifng. When ablation was added to immunotherapy, 100% (n=20/20) of directly treated tumors and 90% (n=18/20) of distant tumors were responsive. Comparing the combined ablation-immunotherapy treatment to immunotherapy alone, we find three major mechanistic differences. First, while ablation alone enhanced intratumoral antigen cross-presentation (up to ~8% of CD45+ cells), systemic cross-presentation of tumor antigen remained low. Combining same-site ablation with CpG amplified cross-presentation in the draining lymph node (~16% of CD45+ cells) compared to the ablation-only (~0.1% of CD45+ cells) and immunotherapy-only cohorts (~10% of CD45+ cells). Macrophages and DCs process and present this antigen to CD8+ T-cells, increasing the number of unique T-cell receptor rearrangements in distant tumors. Second, type I interferon (IFN) release from tumor cells increased with the ablation-immunotherapy treatment as compared with ablation or immunotherapy alone. Type I IFN release is synergistic with toll-like receptor activation in enhancing cytokine and chemokine expression. Expression of genes associated with T-cell activation and stimulation (Eomes, Prf1 and Icos) was 27, 56 and 89-fold higher with ablation-immunotherapy treatment as compared to the no-treatment controls (and 12, 32 and 60-fold higher for immunotherapy-only treatment as compared to the no-treatment controls). Third, we found that the ablation-immunotherapy treatment polarized macrophages and dendritic cells towards a CD169 subset systemically, where CD169+ macrophages are an IFN-enhanced subpopulation associated with dead-cell antigen presentation. Conclusion: While the local and distant responses are distinct, CpG combined with ablative focal therapy drives a highly effective systemic immune response
The Alexander-Orbach conjecture holds in high dimensions
We examine the incipient infinite cluster (IIC) of critical percolation in
regimes where mean-field behavior has been established, namely when the
dimension d is large enough or when d>6 and the lattice is sufficiently spread
out. We find that random walk on the IIC exhibits anomalous diffusion with the
spectral dimension d_s=4/3, that is, p_t(x,x)= t^{-2/3+o(1)}. This establishes
a conjecture of Alexander and Orbach. En route we calculate the one-arm
exponent with respect to the intrinsic distance.Comment: 25 pages, 2 figures. To appear in Inventiones Mathematica
Constraining Sources of Ultra High Energy Cosmic Rays Using High Energy Observations with the Fermi Satellite
We analyze the conditions that enable acceleration of particles to ultra-high
energies, ~10^{20} eV (UHECRs). We show that broad band photon data recently
provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the
ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV
- GeV) photons are produced by Compton scattering of the emitted low energy
photons and the cosmic microwave background or extra-galactic background light.
The ratio of the luminosities at high and low photon energies can therefore be
used as a probe of the physical conditions in the acceleration site. We find
that existing data excludes core regions of nearby radio-loud AGN as possible
acceleration sites of UHECR protons. However, we show that giant radio lobes
are not excluded. We apply our method to Cen A, and show that acceleration of
protons to ~10^{20} eV can only occur at distances >~ 100 kpc from the core.Comment: Extended discussion on former results; Accepted for publication in
JCA
On the effect of heterovalent substitutions in ruthenocuprates
We discuss the properties of superconducting derivatives of the RuSr2GdCu2O8
(1212-type) ruthenocuprate, for which heterovalent doping has been achieved
through partial substitution of Cu ions into the RuO2 planes
(Ru1-xSr2GdCu2+xO8-d, 0<x<0.75, Tcmax=72 K for x=0.3-0.4) and Ce ions into the
Gd sites (RuSr2Gd1-yCeyCu2O8, 0<y<0.1). The measurements of XANES, thermopower,
and magnetization under external pressure reveal an underdoped character of all
compounds. Muon spin rotation experiments indicate the presence of magnetic
order at low temperatures (Tm=14-2 K for x=0.1-0.4). Properties of these two
series lead us to the qualitative phase diagram for differently doped 1212-type
ruthenocuprates. The difference in temperature of magnetic ordering found for
superconducting and non-superconducting RuSr2GdCu2O8 is discussed in the
context of the properties of substituted compounds. The high pressure oxygen
conditions required for synthesis of Ru1-xSr2RECu2+xO8-d, have been extended to
synthesis of a Ru1-xSr2Eu2-yCeyCu2+xO10-d series. The Cu->Ru doping achieved in
these phases is found to decrease the temperature for magnetic ordering as well
the volume fraction of the magnetic phase.Comment: Proceedings of the 3rd Polish-US Workshop on Magnetism and
Superconductivity of Advanced Materials, July 14-19, 2002, Ladek Zdroj
(Poland) to appear in Physica
- …
