930 research outputs found
Effect of the W-term for a t-U-W Hubbard ladder
Antiferromagnetic and d_{x2-y2}-pairing correlations appear delicately
balanced in the 2D Hubbard model. Whether doping can tip the balance to pairing
is unclear and models with additional interaction terms have been studied. In
one of these, the square of a local hopping kinetic energy H_W was found to
favor pairing. However, such a term can be separated into a number of simpler
processes and one would like to know which of these terms are responsible for
enhancing the pairing. Here we analyze these processes for a 2-leg Hubbard
ladder
Comment on "Quantum Monte Carlo Evidence for Superconductivity in the Three-Band Hubbard Model in Two Dimensions"
In a recent Letter, Kuroki and Aoki [Phys. Rev. Lett. 76, 440 (1996)]
presented quantum Monte-Carlo (QMC) results for pairing correlations in the
three-band Hubbard model, which describes the Cu-d_{x^2-y^2} and O-p_{x,y}
orbitals present in the CuO_2 planes of high-T_c materials. In this comment we
argue that (i) the used parameter set is not appropriate for the description of
high-T_c materials since it does not satisfy the minimal requirement of a
charge-transfer gap at half-filling, and (ii) the observed increase in the
d_{x^2-y^2} channel is dominantly produced by the pair-field correlations
without the vertex part. Hence, the claim of evidence of ODLRO is not
justified.Comment: 1 page latex and 2 eps-figures, uses epsfig, submitted to PR
Dynamic response of trapped ultracold bosons on optical lattices
We study the dynamic response of ultracold bosons trapped in one-dimensional
optical lattices using Quantum Monte Carlo simulations of the boson Hubbard
model with a confining potential. The dynamic structure factor reveals the
inhomogeneous nature of the low temperature state, which contains coexisting
Mott insulator and superfluid regions. We present new evidence for local
quantum criticality and shed new light on the experimental excitation spectrum
of 87Rb atoms confined in one dimension.Comment: 4 pages, 5 figure
Insulator-Metal Transition in the One and Two-Dimensional Hubbard Models
We use Quantum Monte Carlo methods to determine Green functions,
, on lattices up to for the 2D Hubbard model
at . For chemical potentials, , within the Hubbard gap, , and at {\it long} distances, , with critical behavior: , . This result stands in agreement with the
assumption of hyperscaling with correlation exponent and dynamical
exponent . In contrast, the generic band insulator as well as the
metal-insulator transition in the 1D Hubbard model are characterized by and .Comment: 9 pages (latex) and 5 postscript figures. Submitted for publication
in Phys. Rev. Let
Charge and Spin Structures of a Superconductor in the Proximity of an Antiferromagnetic Mott Insulator
To the Hubbard model on a square lattice we add an interaction, , which
depends upon the square of a near-neighbor hopping. We use zero temperature
quantum Monte Carlo simulations on lattice sizes up to , to show
that at half-filling and constant value of the Hubbard repulsion, the
interaction triggers a quantum transition between an antiferromagnetic Mott
insulator and a superconductor. With a combination of finite
temperature quantum Monte Carlo simulations and the Maximum Entropy method, we
study spin and charge degrees of freedom in the superconducting state. We give
numerical evidence for the occurrence of a finite temperature
Kosterlitz-Thouless transition to the superconducting state.
Above and below the Kosterlitz-Thouless transition temperature, , we
compute the one-electron density of states, , the spin relaxation
rate , as well as the imaginary and real part of the spin susceptibility
. The spin dynamics are characterized by the vanishing of
and divergence of in the low
temperature limit. As is approached develops a pseudo-gap
feature and below shows a peak
at finite frequency.Comment: 46 pages (latex) including 14 figures in encapsulated postscript
format. Submitted for publication in Phys. Rev.
Quantum Transition between an Antiferromagnetic Mott Insulator and Superconductor in Two Dimensions
We consider a Hubbard model on a square lattice with an additional
interaction, , which depends upon the square of a near-neighbor hopping. At
half-filling and a constant value of the Hubbard repulsion, increasing the
strength of the interaction drives the system from an antiferromagnetic
Mott insulator to a superconductor. This conclusion is reached
on the basis of zero temperature quantum Monte Carlo simulations on lattice
sizes up to .Comment: 4 pages (latex) and 4 postscript figure
Single-hole dynamics in the half-filled two-dimensional Kondo-Hubbard model
We consider the Kondo lattice model in two dimensions at half filling. In
addition to the fermionic hopping integral and the superexchange coupling
the role of a Coulomb repulsion in the conduction band is investigated.
We find the model to display a magnetic order-disorder transition in the U-J
plane with a critical value of J_c which is decreasing as a function of U. The
single particle spectral function A(k,w) is computed across this transition.
For all values of J > 0, and apart from shadow features present in the ordered
state, A(k,w) remains insensitive to the magnetic phase transition with the
first low-energy hole states residing at momenta k = (\pm \pi, \pm \pi). As J
-> 0 the model maps onto the Hubbard Hamiltonian. Only in this limit, the
low-energy spectral weight at k = (\pm \pi, \pm \pi) vanishes with first
electron removal-states emerging at wave vectors on the magnetic Brillouin zone
boundary. Thus, we conclude that (i) the local screening of impurity spins
determines the low energy behavior of the spectral function and (ii) one cannot
deform continuously the spectral function of the Mott-Hubbard insulator at J=0
to that of the Kondo insulator at J > J_c. Our results are based on both, T=0
Quantum Monte-Carlo simulations and a bond-operator mean-field theory.Comment: 8 pages, 7 figures. Submitted to PR
Doping induced metal-insulator transition in two-dimensional Hubbard, , and extended Hubbard, , models
We show numerically that the nature of the doping induced metal-insulator
transition in the two-dimensional Hubbard model is radically altered by the
inclusion of a term, , which depends upon a square of a single-particle
nearest-neighbor hopping. This result is reached by computing the localization
length, , in the insulating state. At finite values of we find
results consistent with where is
the critical chemical potential. In contrast, for the Hubbard model. At finite values of , the presented
numerical results imply that doping the antiferromagnetic Mott insulator leads
to a superconductor.Comment: 19 pages (latex) including 7 figures in encapsulated postscript
format. Submitted for publication in Phys. Rev.
Spin and charge dynamics of the ferromagnetic and antiferromagnetic two-dimensional half-filled Kondo lattice model
We present a detailed numerical study of spin and charge dynamics of the
two-dimensional Kondo lattice model with hopping t and exchange J. At T=0 and J
> 0, the competition between the RKKY interaction and Kondo effect triggers a
quantum phase transition between magnetically ordered and disordered
insulators: J_c/t = 1.45(5). The quasiparticle gap scales as |J|. S(q,\omega),
evolves smoothly from its strong coupling form with spin gap at q = (\pi,\pi)
to a spin wave form. At J>0, A(\vec{k},\omega) shows a dispersion relation
following that of hybridized bands. For J < J_c this feature is supplemented by
shadows thus pointing to a coexistence of Kondo screening and magnetism. For J
< 0 A(\vec{k},\omega) is similar to that of non-interacting electrons in a
staggered magnetic field. Spin, T_S, and charge, T_C, scales are defined. For
weak to intermediate couplings, T_S marks the onset of antiferromagnetic
fluctuations and follows a J^2 law. At strong couplings T_S scales as J. T_C
scales as J both at weak and strong couplings. At and slightly below T_C we
observe i) a rise in the resistivity as a function of decreasing temperature,
ii) a dip in the integrated density of states at the Fermi energy and iii) the
occurrence of hybridized bands in A(k,\omega). It is shown that in the weak
coupling limit, the charge gap of order J is of magnetic origin. The specific
heat shows a two peak structure, the low temperature peak being of magnetic
origin. Our results are compared to various mean-field theories.Comment: 30 pages, 24 figure
- …
