3,501 research outputs found
Comparative study of bolometric and non-bolometric switching elements for microwave phase shifters
The performance of semiconductor and high critical temperature superconductor switches is compared as they are used in delay-line-type microwave and millimeter-wave phase shifters. Such factors as their ratios of the off-to-on resistances, parasitic reactances, power consumption, speed, input-to-output isolation, ease of fabrication, and physical dimensions are compared. Owing to their almost infinite off-to-on resistance ratio and excellent input-to-output isolation, bolometric superconducting switches appear to be quite suitable for use in microwave phase shifters; their only drawbacks are their speed and size. The SUPERFET, a novel device whose operation is based on the electric field effect in high critical temperature ceramic superconductors is also discussed. Preliminary results indicate that the SUPERFET is fast and that it can be scaled; therefore, it can be fabricated with dimensions comparable to semiconductor field-effect transistors
Online Makespan Minimization with Parallel Schedules
In online makespan minimization a sequence of jobs
has to be scheduled on identical parallel machines so as to minimize the
maximum completion time of any job. We investigate the problem with an
essentially new model of resource augmentation. Here, an online algorithm is
allowed to build several schedules in parallel while processing . At
the end of the scheduling process the best schedule is selected. This model can
be viewed as providing an online algorithm with extra space, which is invested
to maintain multiple solutions. The setting is of particular interest in
parallel processing environments where each processor can maintain a single or
a small set of solutions.
We develop a (4/3+\eps)-competitive algorithm, for any 0<\eps\leq 1, that
uses a number of 1/\eps^{O(\log (1/\eps))} schedules. We also give a
(1+\eps)-competitive algorithm, for any 0<\eps\leq 1, that builds a
polynomial number of (m/\eps)^{O(\log (1/\eps) / \eps)} schedules. This value
depends on but is independent of the input . The performance
guarantees are nearly best possible. We show that any algorithm that achieves a
competitiveness smaller than 4/3 must construct schedules. Our
algorithms make use of novel guessing schemes that (1) predict the optimum
makespan of a job sequence to within a factor of 1+\eps and (2)
guess the job processing times and their frequencies in . In (2) we
have to sparsify the universe of all guesses so as to reduce the number of
schedules to a constant.
The competitive ratios achieved using parallel schedules are considerably
smaller than those in the standard problem without resource augmentation
Modeling of a Cantilever-Based Near-Field Scanning Microwave Microscope
We present a detailed modeling and characterization of our scalable microwave
nanoprobe, which is a micro-fabricated cantilever-based scanning microwave
probe with separated excitation and sensing electrodes. Using finite-element
analysis, the tip-sample interaction is modeled as small impedance changes
between the tip electrode and the ground at our working frequencies near 1GHz.
The equivalent lumped elements of the cantilever can be determined by
transmission line simulation of the matching network, which routes the
cantilever signals to 50 Ohm feed lines. In the microwave electronics, the
background common-mode signal is cancelled before the amplifier stage so that
high sensitivity (below 1 atto-Farad capacitance changes) is obtained.
Experimental characterization of the microwave probes was performed on
ion-implanted Si wafers and patterned semiconductor samples. Pure electrical or
topographical signals can be realized using different reflection modes of the
probe.Comment: 7 figure
A Supercooled Spin Liquid State in the Frustrated Pyrochlore Dy2Ti2O7
A "supercooled" liquid develops when a fluid does not crystallize upon
cooling below its ordering temperature. Instead, the microscopic relaxation
times diverge so rapidly that, upon further cooling, equilibration eventually
becomes impossible and glass formation occurs. Classic supercooled liquids
exhibit specific identifiers including microscopic relaxation times diverging
on a Vogel-Tammann-Fulcher (VTF) trajectory, a Havriliak-Negami (HN) form for
the dielectric function, and a general Kohlrausch-Williams-Watts (KWW) form for
time-domain relaxation. Recently, the pyrochlore Dy2Ti2O7 has become of
interest because its frustrated magnetic interactions may, in theory, lead to
highly exotic magnetic fluids. However, its true magnetic state at low
temperatures has proven very difficult to identify unambiguously. Here we
introduce high-precision, boundary-free magnetization transport techniques
based upon toroidal geometries and gain a fundamentally new understanding of
the time- and frequency-dependent magnetization dynamics of Dy2Ti2O7. We
demonstrate a virtually universal HN form for the magnetic susceptibility, a
general KWW form for the real-time magnetic relaxation, and a divergence of the
microscopic magnetic relaxation rates with precisely the VTF trajectory. Low
temperature Dy2Ti2O7 therefore exhibits the characteristics of a supercooled
magnetic liquid; the consequent implication is that this translationally
invariant lattice of strongly correlated spins is evolving towards an
unprecedented magnetic glass state, perhaps due to many-body localization of
spin.Comment: Version 2 updates: added legend for data in Figures 4A and 4B;
corrected equation reference in caption for Figure 4
Statistical mechanics of budget-constrained auctions
Finding the optimal assignment in budget-constrained auctions is a
combinatorial optimization problem with many important applications, a notable
example being the sale of advertisement space by search engines (in this
context the problem is often referred to as the off-line AdWords problem).
Based on the cavity method of statistical mechanics, we introduce a message
passing algorithm that is capable of solving efficiently random instances of
the problem extracted from a natural distribution, and we derive from its
properties the phase diagram of the problem. As the control parameter (average
value of the budgets) is varied, we find two phase transitions delimiting a
region in which long-range correlations arise.Comment: Minor revisio
Investigation of correlation of the variations in land subsidence (detected by continuous GPS measurements) and methodological data in the surrounding areas of Lake Urmia
Lake Urmia, a salt lake in the north-west of Iran, plays a valuable role in the environment, wildlife and economy of Iran and the region, but now faces great challenges for survival. The Lake is in immediate and great danger and is rapidly going to become barren desert. As a result, the increasing demands upon groundwater resources due to expanding metropolitan and agricultural areas are a serious challenge in the surrounding regions of Lake Urmia. The continuous GPS measurements around the lake illustrate significant subsidence rate between 2005 and 2009. The objective of this study was to detect and specify the non-linear correlation of land subsidence and temperature activities in the region from 2005 to 2009. For this purpose, the cross wavelet transform (XWT) was carried out between the two types of time series, namely vertical components of GPS measurements and daily temperature time series. The significant common patterns are illustrated in the high period bands from 180–218 days band (~6–7 months) from September 2007 to February 2009. Consequently, the satellite altimetry data confirmed that the maximum rate of linear trend of water variation in the lake from 2005 to 2009, is associated with time interval from September 2007 to February 2009. This event was detected by XWT as a critical interval to be holding the strong correlation between the land subsidence phenomena and surface temperature. Eventually the analysis can be used for modeling and prediction purposes and probably stave off the damage from subsidence phenomena
The power of choice in network growth
The "power of choice" has been shown to radically alter the behavior of a
number of randomized algorithms. Here we explore the effects of choice on
models of tree and network growth. In our models each new node has k randomly
chosen contacts, where k > 1 is a constant. It then attaches to whichever one
of these contacts is most desirable in some sense, such as its distance from
the root or its degree. Even when the new node has just two choices, i.e., when
k=2, the resulting network can be very different from a random graph or tree.
For instance, if the new node attaches to the contact which is closest to the
root of the tree, the distribution of depths changes from Poisson to a
traveling wave solution. If the new node attaches to the contact with the
smallest degree, the degree distribution is closer to uniform than in a random
graph, so that with high probability there are no nodes in the network with
degree greater than O(log log N). Finally, if the new node attaches to the
contact with the largest degree, we find that the degree distribution is a
power law with exponent -1 up to degrees roughly equal to k, with an
exponential cutoff beyond that; thus, in this case, we need k >> 1 to see a
power law over a wide range of degrees.Comment: 9 pages, 4 figure
Locally Optimal Load Balancing
This work studies distributed algorithms for locally optimal load-balancing:
We are given a graph of maximum degree , and each node has up to
units of load. The task is to distribute the load more evenly so that the loads
of adjacent nodes differ by at most .
If the graph is a path (), it is easy to solve the fractional
version of the problem in communication rounds, independently of the
number of nodes. We show that this is tight, and we show that it is possible to
solve also the discrete version of the problem in rounds in paths.
For the general case (), we show that fractional load balancing
can be solved in rounds and discrete load
balancing in rounds for some function , independently of the
number of nodes.Comment: 19 pages, 11 figure
Upaya Keluarga Untuk Mencegah Penularan Dalam Perawatan Anggota Keluarga Dengan Tb Paru
Indonesia merupakan negara keempat dengan insiden kasus terbanyak untuk tuberkulosis (TB) paru didunia..Penelitian ini menggunakan desain kualitatif dengan pendekatan case study research, bertujuan untuk memberikan penjelasan tentang upaya keluarga untuk mencegah penularan dalam perawatan anggota keluarga dengan TB Paru. Dari hasil analisa data, didapatkan tiga tema dan tujuh subtema yaitu: (1) Modifikasi lingkungan dengan subtema modifikasi ventilasi yang memadai dan menjaga kebersihan. (2) Upaya memutus transmisi penyakit dengan subtema membuang dahak, pengunaan masker, dan menutup saat batuk. (3) Konsumsi obat dan kontrol rutin ke puskesmas dengan subtema pemantauan dari keluarga dalam minum obat (PMO), serta kontrol rutin ke Puskesmas.Berdasarkan hasil penelitian ini diharapkan Puskesmas dapat menambah dan memodifikasi program penanggulangan tuberkulosis (TB). Selain itu perlu dilakukan pengawasan secara berkala atau kunjungan rumah secara rutin untuk memantau pengobatan dan pencegahan penularan Tuberkulosis (TB) yang dilakukan keluarga di rumah
Biomassa e atividade microbiana do solo sob pastagem em sistemas de monocultura e silvipastoril.
A biomassa microbiana é um importante componente do solo que contribui para manutenção do ecossistema de pastagens, principalmente em solos tropicais. Neste sentido, o objetivo do trabalho foi avaliar a biomassa e atividade microbiana do solo sob pastagem em sistemas de monocultura de pasto de Brachiaria brizantha cv. Marandu, e em sistema silvipastoril formado por pasto e coqueiros (Cocos nucifera)
- …
