5,396 research outputs found

    Exploring a cardio-thoracic hospital ward soundscape in relation to restoration

    Get PDF
    Hospitals can provide stressful experiences for both patients and medical staff. A well-designed hospital soundscape should avoid adding to negative emotional states (e.g. stress), limit any detrimental cognitive effects (e.g. attentional fatigue), and enable restoration. Experiences of the cardio-thoracic ward soundscape, in a UK public University hospital, were explored via semi-structured interviews with 11 patients and 16 nurses. Thematic coding analysis resulted in 11 key themes including notions of restoration and emotional responses. The themes were used to develop a conceptual model to describe the processes involved in the perception and evaluation of the soundscape. The language used by patients and nurses indicated the emotional response to the soundscape was at times stressful and at others potentially restorative. Coping methods of accepting and habituating to individual sounds were noted. The impact of the patients' and nurses' ability to maintain these coping strategies are discussed in relation to restoration and the temporal variation of the soundscape. A period of 'quiet time' was in operation at the hospital and the importance of this was noted through various responses relating to emotion and restoration. The results suggest the soundscape has potentially, a beneficial role in facilitating restoration thus helping patients' recovery and medical staff's ability to remain productive. This research supports the need to study hospital soundscapes further so that design implications can be considered for the production of a more restorative environment, possibly through the masking/removal of unwanted sounds and optimising positive sounds

    Fluctuating Hall resistance defeats the quantized Hall insulator

    Full text link
    Using the Chalker-Coddington network model as a drastically simplified, but universal model of integer quantum Hall physics, we investigate the plateau-to-insulator transition at strong magnetic field by means of a real-space renormalization approach. Our results suggest that for a fully quantum coherent situation, the quantized Hall insulator with R_H approx. h/e^2 is observed up to R_L ~25 h/e^2 when studying the most probable value of the distribution function P(R_H). Upon further increasing R_L ->\infty the Hall insulator with diverging Hall resistance R_H \propto R_L^kappa is seen. The crossover between these two regimes depends on the precise nature of the averaging procedure.Comment: major revision, discussion of averaging improved; 8 pages, 7 figures; accepted for publication in EP

    Quantitative Nanofriction Characterization of Corrugated Surfaces by Atomic Force Microscopy

    Full text link
    Atomic Force Microscopy (AFM) is a suitable tool to perform tribological characterization of materials down to the nanometer scale. An important aspect in nanofriction measurements of corrugated samples is the local tilt of the surface, which affects the lateral force maps acquired with the AFM. This is one of the most important problems of state-of-the-art nanotribology, making difficult a reliable and quantitative characterization of real corrugated surfaces. A correction of topographic spurious contributions to lateral force maps is thus needed for corrugated samples. In this paper we present a general approach to the topographic correction of AFM lateral force maps and we apply it in the case of multi-asperity adhesive contact. We describe a complete protocol for the quantitative characterization of the frictional properties of corrugated systems in the presence of surface adhesion using the AFM.Comment: 33 pages, 9 figures, RevTex 4, submitted to Journal of Applied Physic

    Measuring the Stellar Masses of z~7 Galaxies with Spitzer Ultrafaint Survey Program (SURFS UP)

    Full text link
    We present Spitzer/IRAC observations of nine zz'-band dropouts highly magnified (2<mu<12) by the Bullet Cluster. We combine archival imaging with our Exploratory program (SURFS UP), which results in a total integration time of ~30 hr per IRAC band. We detect (>3sigma) in both IRAC bands the brightest of these high-redshift galaxies, with [3.6]=23.80+-0.28 mag, [4.5]=23.78+-0.25 mag, and (H-[3.6])=1.17+-0.32 mag. The remaining eight galaxies are undetected to [3.6]~26.4 mag and [4.5]~26.0 mag with stellar masses of ~5x10^7 M_sol. The detected galaxy has an estimated magnification of mu=12+-4, which implies this galaxy has an ultraviolet luminosity of L_1500~0.3 L*_{z=7} --- the lowest luminosity individual source detected in IRAC at z>7. By modeling the broadband photometry, we estimate the galaxy has an intrinsic star-formation rate of SFR~1.3 M_sol/yr and stellar mass of M~2x10^9 M_sol, which gives a specific star-formation rate of sSFR~0.7 Gyr^-1. If this galaxy had sustained this star-formation rate since z~20, it could have formed the observed stellar mass (to within a factor of ~2), we also discuss alternate star-formation histories and argue the exponentially-increasing model is unlikely. Finally, based on the intrinsic star-formation rate, we estimate this galaxy has a likely [C II] flux of = 10^{-17} erg/s/cm2.Comment: Accepted to ApJL. 6 pages, 3 figures, 2 table

    Universality of the critical conductance distribution in various dimensions

    Full text link
    We study numerically the metal - insulator transition in the Anderson model on various lattices with dimension 2<d42 < d \le 4 (bifractals and Euclidian lattices). The critical exponent ν\nu and the critical conductance distribution are calculated. We confirm that ν\nu depends only on the {\it spectral} dimension. The other parameters - critical disorder, critical conductance distribution and conductance cummulants - depend also on lattice topology. Thus only qualitative comparison with theoretical formulae for dimension dependence of the cummulants is possible

    Renormalization group approach to energy level statistics at the integer quantum Hall transition

    Full text link
    We extend the real-space renormalization group (RG) approach to the study of the energy level statistics at the integer quantum Hall (QH) transition. Previously it was demonstrated that the RG approach reproduces the critical distribution of the {\em power} transmission coefficients, i.e., two-terminal conductances, Pc(G)P_{\text c}(G), with very high accuracy. The RG flow of P(G)P(G) at energies away from the transition yielded the value of the critical exponent, ν\nu, that agreed with most accurate large-size lattice simulations. To obtain the information about the level statistics from the RG approach, we analyze the evolution of the distribution of {\em phases} of the {\em amplitude} transmission coefficient upon a step of the RG transformation. From the fixed point of this transformation we extract the critical level spacing distribution (LSD). This distribution is close, but distinctively different from the earlier large-scale simulations. We find that away from the transition the LSD crosses over towards the Poisson distribution. Studying the change of the LSD around the QH transition, we check that it indeed obeys scaling behavior. This enables us to use the alternative approach to extracting the critical exponent, based on the LSD, and to find ν=2.37±0.02\nu=2.37\pm0.02 very close to the value established in the literature. This provides additional evidence for the surprising fact that a small RG unit, containing only five nodes, accurately captures most of the correlations responsible for the localization-delocalization transition.Comment: 10 pages, 11 figure

    Methane Mitigation:Methods to Reduce Emissions, on the Path to the Paris Agreement

    Get PDF
    The atmospheric methane burden is increasing rapidly, contrary to pathways compatible with the goals of the 2015 United Nations Framework Convention on Climate Change Paris Agreement. Urgent action is required to bring methane back to a pathway more in line with the Paris goals. Emission reduction from “tractable” (easier to mitigate) anthropogenic sources such as the fossil fuel industries and landfills is being much facilitated by technical advances in the past decade, which have radically improved our ability to locate, identify, quantify, and reduce emissions. Measures to reduce emissions from “intractable” (harder to mitigate) anthropogenic sources such as agriculture and biomass burning have received less attention and are also becoming more feasible, including removal from elevated-methane ambient air near to sources. The wider effort to use microbiological and dietary intervention to reduce emissions from cattle (and humans) is not addressed in detail in this essentially geophysical review. Though they cannot replace the need to reach “net-zero” emissions of CO2, significant reductions in the methane burden will ease the timescales needed to reach required CO2 reduction targets for any particular future temperature limit. There is no single magic bullet, but implementation of a wide array of mitigation and emission reduction strategies could substantially cut the global methane burden, at a cost that is relatively low compared to the parallel and necessary measures to reduce CO2, and thereby reduce the atmospheric methane burden back toward pathways consistent with the goals of the Paris Agreement
    corecore