84,581 research outputs found
Effects of Confinement on Critical Adsorption: Absence of Critical Depletion for Fluids in Slit Pores
The adsorption of a near-critical fluid confined in a slit pore is
investigated by means of density functional theory and by Monte Carlo
simulation for a Lennard-Jones fluid. Our work was stimulated by recent
experiments for SF_6 adsorbed in a mesoporous glass which showed the striking
phenomenon of critical depletion, i.e. the adsorption excess "Gamma" first
increases but then decreases very rapidly to negative values as the bulk
critical temperature T_c is approached from above along near-critical
isochores. By contrast, our density functional and simulation results, for a
range of strongly attractive wall-fluid potentials, show Gamma monotonically
increasing and eventually saturating as the temperature is lowered towards T_c
along both the critical (rho=rho_c) and sub-critical isochores (rho<\rho_c).
Such behaviour results from the increasingly slow decay of the density profile
away from the walls, into the middle of the slit, as T->T_c. For rho < rho_c we
find that in the fluid the effective bulk field, which is negative and which
favours desorption, is insufficient to dominate the effects of the surface
fields which favour adsorption. We compare this situation with earlier results
for the lattice gas model with a constant (negative) bulk field where critical
depletion was found. Qualitatively different behaviour of the density profiles
and adsorption is found in simulations for intermediate and weakly attractive
wall-fluid potentials but in no case do we observe the critical depletion found
in experiments. We conclude that the latter cannot be accounted for by a single
pore model.Comment: 21 pages Revtex. Submitted to Phys. Rev.
Phase Transition in the ABC Model
Recent studies have shown that one-dimensional driven systems can exhibit
phase separation even if the dynamics is governed by local rules. The ABC
model, which comprises three particle species that diffuse asymmetrically
around a ring, shows anomalous coarsening into a phase separated steady state.
In the limiting case in which the dynamics is symmetric and the parameter
describing the asymmetry tends to one, no phase separation occurs and the
steady state of the system is disordered. In the present work we consider the
weak asymmetry regime where is the system size and
study how the disordered state is approached. In the case of equal densities,
we find that the system exhibits a second order phase transition at some
nonzero .
The value of and the optimal profiles can be
obtained by writing the exact large deviation functional. For nonequal
densities, we write down mean field equations and analyze some of their
predictions.Comment: 18 pages, 3 figure
Spontaneous Symmetry Breaking in a Non-Conserving Two-Species Driven Model
A two species particle model on an open chain with dynamics which is
non-conserving in the bulk is introduced. The dynamical rules which define the
model obey a symmetry between the two species. The model exhibits a rich
behavior which includes spontaneous symmetry breaking and localized shocks. The
phase diagram in several regions of parameter space is calculated within
mean-field approximation, and compared with Monte-Carlo simulations. In the
limit where fluctuations in the number of particles in the system are taken to
zero, an exact solution is obtained. We present and analyze a physical picture
which serves to explain the different phases of the model
Exact solution of the zero-range process: fundamental diagram of the corresponding exclusion process
In this paper, we propose a general way of computing expectation values in
the zero-range process, using an exact form of the partition function. As an
example, we provide the fundamental diagram (the flux-density plot) of the
asymmetric exclusion process corresponding to the zero-range process.We express
the partition function for the steady state by the Lauricella hypergeometric
function, and thereby have two exact fundamental diagrams each for the parallel
and random sequential update rules. Meanwhile, from the viewpoint of
equilibrium statistical mechanics, we work within the canonical ensemble but
the result obtained is certainly in agreement with previous works done in the
grand canonical ensemble.Comment: 12 pages, 2 figure
An exactly solvable dissipative transport model
We introduce a class of one-dimensional lattice models in which a quantity,
that may be thought of as an energy, is either transported from one site to a
neighbouring one, or locally dissipated. Transport is controlled by a
continuous bias parameter q, which allows us to study symmetric as well as
asymmetric cases. We derive sufficient conditions for the factorization of the
N-body stationary distribution and give an explicit solution for the latter,
before briefly discussing physically relevant situations.Comment: 7 pages, 1 figure, submitted to J. Phys.
Yang-Lee Theory for a Nonequilibrium Phase Transition
To analyze phase transitions in a nonequilibrium system we study its grand
canonical partition function as a function of complex fugacity. Real and
positive roots of the partition function mark phase transitions. This behavior,
first found by Yang and Lee under general conditions for equilibrium systems,
can also be applied to nonequilibrium phase transitions. We consider a
one-dimensional diffusion model with periodic boundary conditions. Depending on
the diffusion rates, we find real and positive roots and can distinguish two
regions of analyticity, which can identified with two different phases. In a
region of the parameter space both of these phases coexist. The condensation
point can be computed with high accuracy.Comment: 4 pages, accepted for publication in Phys.Rev.Let
Condensation Transitions in Two Species Zero-Range Process
We study condensation transitions in the steady state of a zero-range process
with two species of particles. The steady state is exactly soluble -- it is
given by a factorised form provided the dynamics satisfy certain constraints --
and we exploit this to derive the phase diagram for a quite general choice of
dynamics. This phase diagram contains a variety of new mechanisms of condensate
formation, and a novel phase in which the condensate of one of the particle
species is sustained by a `weak' condensate of particles of the other species.
We also demonstrate how a single particle of one of the species (which plays
the role of a defect particle) can induce Bose-Einstein condensation above a
critical density of particles of the other species.Comment: 17 pages, 4 Postscript figure
Conserved mass models with stickiness and chipping
We study a chipping model in one dimensional periodic lattice with continuous
mass, where a fixed fraction of the mass is chipped off from a site and
distributed randomly among the departure site and its neighbours; the remaining
mass sticks to the site. In the asymmetric version, the chipped off mass is
distributed among the site and the right neighbour, whereas in the symmetric
version the redistribution occurs among the two neighbours. The steady state
mass distribution of the model is obtained using a perturbation method for both
parallel and random sequential updates. In most cases, this perturbation theory
provides a steady state distribution with reasonable accuracy.Comment: 17 pages, 4 eps figure
- …
