4,752 research outputs found
The Occupational Stress Inventory-Revised:Confirmatory factor analysis of the original inter-correlation data set and model
Breaking and restoring of diffeomorphism symmetry in discrete gravity
We discuss the fate of diffeomorphism symmetry in discrete gravity.
Diffeomorphism symmetry is typically broken by the discretization. This has
repercussions for the observable content and the canonical formulation of the
theory. It might however be possible to construct discrete actions, so--called
perfect actions, with exact symmetries and we will review first steps towards
this end.Comment: to appear in the Proceedings of the XXV Max Born Symposium "The
Planck Scale", Wroclaw, 29 June - 3 July, 200
Assessing the influence of the carbon oxidation-reduction state on organic pollutant biodegradation in algal-bacterial photobioreactors
The influence of the carbon oxidation-reduction state (CORS) of organic pollutants on their biodegradation in enclosed algal-bacterial photobioreactors was evaluated using a consortium of enriched wild-type methanotrophic bacteria and microalgae. Methane, methanol and glucose (with CORS -4, -2 and 0, respectively) were chosen as model organic pollutants. In the absence of external oxygen supply, microalgal photosynthesis was not capable of supporting a significant methane and methanol biodegradation due to their high oxygen demands per carbon unit, while glucose was fully oxidized by photosynthetic oxygenation. When bicarbonate was added, removal efficiencies of 37¿±¿4% (20 days), 65¿±¿4% (11 days) and 100% (2 days) were recorded for CH(4,) CH(3)OH and C(6)H(12)O(6), respectively due to the additional oxygen generated from photosynthetic bicarbonate assimilation. The use of NO(3)(-) instead of NH(4)(+) as nitrogen source (N oxidation-reduction state of +5 vs. -3) resulted in an increase in CH(4) degradation from 0 to 33¿±¿3% in the absence of bicarbonate and from 37¿±¿4% to 100% in the presence of bicarbonate, likely due to a decrease in the stoichiometric oxygen requirements and the higher photosynthetic oxygen production. Hypothetically, the CORS of the substrates might affect the CORS of the microalgal biomass composition (higher lipid content). However, the total lipid content of the algal-bacterial biomass was 19¿±¿7% in the absence and 16¿±¿2% in the presence of bicarbonat
From covariant to canonical formulations of discrete gravity
Starting from an action for discretized gravity we derive a canonical
formalism that exactly reproduces the dynamics and (broken) symmetries of the
covariant formalism. For linearized Regge calculus on a flat background --
which exhibits exact gauge symmetries -- we derive local and first class
constraints for arbitrary triangulated Cauchy surfaces. These constraints have
a clear geometric interpretation and are a first step towards obtaining
anomaly--free constraint algebras for canonical lattice gravity. Taking higher
order dynamics into account the symmetries of the action are broken. This
results in consistency conditions on the background gauge parameters arising
from the lowest non--linear equations of motion. In the canonical framework the
constraints to quadratic order turn out to depend on the background gauge
parameters and are therefore pseudo constraints. These considerations are
important for connecting path integral and canonical quantizations of gravity,
in particular if one attempts a perturbative expansion.Comment: 37 pages, 5 figures (minor modifications, matches published version +
updated references
The Hot Bang state of massless fermions
In 2002, a method has been proposed by Buchholz et al. in the context of
Local Quantum Physics, to characterize states that are locally in thermodynamic
equilibrium. It could be shown for the model of massless bosons that these
states exhibit quite interesting properties. The mean phase-space density
satisfies a transport equation, and many of these states break time reversal
symmetry. Moreover, an explicit example of such a state, called the Hot Bang
state, could be found, which models the future of a temperature singularity.
However, although the general results carry over to the fermionic case easily,
the proof of existence of an analogue of the Hot Bang state is not quite that
straightforward. The proof will be given in this paper. Moreover, we will
discuss some of the mathematical subtleties which arise in the fermionic case.Comment: 17 page
Clinical Evolution of New Delhi Metallo-β-Lactamase (NDM) optimizes resistance under Zn(II) Deprivation
Carbapenem-resistant Enterobacteriaceae (CRE) are rapidly spreading and taking a staggering toll on all health care systems, largely due to the dissemination of genes coding for potent carbapenemases. An important family of carbapenemases are the Zn(II)-dependent β-lactamases, known as metallo-β-lactamases (MBLs). Among them, the New Delhi metallo-β-lactamase (NDM) has experienced the fastest and widest geographical spread. While other clinically important MBLs are soluble periplasmic enzymes, NDMs are lipoproteins anchored to the outer membrane in Gram-negative bacteria. This unique cellular localization endows NDMs with enhanced stability upon the Zn(II) starvation elicited by the immune system response at the sites of infection. Since the first report of NDM-1, new allelic variants (16 in total) have been identified in clinical isolates differing by a limited number of substitutions. Here, we show that these variants have evolved by accumulating mutations that enhance their stability or the Zn(II) binding affinity in vivo, overriding the most common evolutionary pressure acting on catalytic efficiency. We identified the ubiquitous substitution M154L as responsible for improving the Zn(II) binding capabilities of the NDM variants. These results also reveal that Zn(II) deprivation imposes a strict constraint on the evolution of this MBL, overriding the most common pressures acting on catalytic performance, and shed light on possible inhibitory strategies.Fil: Bahr, Guillermo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vitor Horen, Luisina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Bethel, Christopher R.. Louis Stokes Cleveland VA Medical Center; Estados UnidosFil: Bonomo, Robert A.. Louis Stokes Cleveland VA Medical Center; Estados UnidosFil: Gonzalez, Lisandro Javier. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; ArgentinaFil: Vila, Alejandro Jose. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Rosario. Instituto de Biología Molecular y Celular de Rosario. Universidad Nacional de Rosario. Facultad de Ciencias Bioquímicas y Farmacéuticas. Instituto de Biología Molecular y Celular de Rosario; Argentin
A prospective analysis of the injury incidence of young male professional football players on artificial turf
Background: The effects of synthetic surfaces on the risk of injuries is still debated in literature and the majority of published data seems to be contradictory. For such reasons the understanding of injury incidence on such surfaces, especially in youth sport, is fundamental for injury prevention. Objectives: The aim of this study was to prospectively report the epidemiology of injuries in young football players, playing on artificial turfs, during a one sports season. Patients and Methods: 80 young male football players (age 16.1 ± 3.7 years; height 174 ± 6.6 cm; weight 64.2 ± 6.3 kg) were enrolled in a prospective cohort study. The participants were then divided in two groups; the first included players age ranging from 17 to 19 (OP) whereas the second included players age ranging from 13 to 16 (YP). Injury incidence was recorded prospectively, according to the consensus statement for soccer. Results: A total of 107 injuries (35 from the OP and 72 from the YP) were recorded during an exposure time of 83.760 hours (incidence 1.28/1000 per player hours); 22 during matches (incidence 2.84/1000 per player hours, 20.5%) and 85 during training (incidence 1.15/1000 per player hours, 79.5%). Thigh and groin were the most common injury locations (33.6% and 21.5%, respectively) while muscle injuries such as contractures and strains were the most common injury typologies (68.23%). No statistical differences between groups were displayed, except for the rate of severe injuries during matches, with the OP displaying slightly higher rates compared to the YP. Severe injuries accounted for 10.28% of the total injuries reported. The average time lost due to injuries was 14 days. Re-injuries accounted for 4.67% of all injuries sustained during the season. Conclusions: In professional youth soccer injury rates are reasonably low. Muscle injuries are the most common type of injuries while groin and thigh the most common locations. Artificial turf pitches don’t seem to contribute to injury incidence in young football players
From the discrete to the continuous - towards a cylindrically consistent dynamics
Discrete models usually represent approximations to continuum physics.
Cylindrical consistency provides a framework in which discretizations mirror
exactly the continuum limit. Being a standard tool for the kinematics of loop
quantum gravity we propose a coarse graining procedure that aims at
constructing a cylindrically consistent dynamics in the form of transition
amplitudes and Hamilton's principal functions. The coarse graining procedure,
which is motivated by tensor network renormalization methods, provides a
systematic approximation scheme towards this end. A crucial role in this coarse
graining scheme is played by embedding maps that allow the interpretation of
discrete boundary data as continuum configurations. These embedding maps should
be selected according to the dynamics of the system, as a choice of embedding
maps will determine a truncation of the renormalization flow.Comment: 22 page
- …
