1,214 research outputs found

    Millikelvin magnetic relaxation measurements of alpha-Fe2O3 antiferromagnetic particles

    Full text link
    In this paper we report magnetic relaxation data for antiferromagnetic alpha-Fe2O3 particles of 5 nm mean diameter in the temperature range 0.1 K to 25 K. The average spin value of these particles S=124 and the uniaxial anisotropy constant D=1.6x10^-2 K have been estimated from the experimental values of the blocking temperature and anisotropy field. The observed plateau in the magnetic viscosity from 3 K down to 100 mK agrees with the occurrence of spin tunneling from the ground state Sz = S. However, the scaling M vs Tln(nu t) is broken below 5 K, suggesting the occurrence of tunneling from excited states below this temperature.Comment: 4 pages (two columns), 4 figure

    How to distinguish between interacting and noninteracting molecules in tunnel junctions

    Full text link
    Recent experiments demonstrate a temperature control of the electric conduction through a ferrocene-based molecular junction. Here we examine the results in view of determining means to distinguish between transport through single-particle molecular levels or via transport channels split by Coulomb repulsion. Both transport mechanisms are similar in molecular junctions given the similarities between molecular intralevel energies and the charging energy. We propose an experimentally testable way to identify the main transport process. By applying a magnetic field to the molecule, we observe that an interacting theory predicts a shift of the conductance resonances of the molecule whereas in the noninteracting case each resonance is split into two peaks. The interaction model works well in explaining our experimental results obtained in a ferrocene-based single-molecule junction, where the charge degeneracy peaks shift (but do not split) under the action of an applied 7-Tesla magnetic field. This method is useful for a proper characterization of the transport properties of molecular tunnel junctions.Comment: Main text: 7 pages, 5 figures; SI: 2 pages, 2 figures. Accepted to RSC Nanoscal

    Molecular phylogenetics of Haustrinae and Pagodulinae (Neogastropoda: Muricidae) with a focus on New Zealand species

    Get PDF
    We investigated the relationships of the muricid subfamilies Haustrinae, Pagodulinae and the genus Poirieria using a molecular phylogenetic approach on a dataset of three mitochondrial genes (12S, 16S and COI). These taxa form a well-supported clade within Muricidae. The phylogenetic analysis suggests that Poirieria is the sister group of Pagodulinae and that Axymene, Comptella, Pagodula, Paratrophon, Trophonella, Trophonopsis, Xymene, Xymenella, Xymenopsis and Zeatrophon are all worthy of genus-level rank within this subfamily. We propose the use of Enixotrophon for a group of species currently classified in Pagodula. The results also support a new taxonomic arrangement in Haustrinae

    Incommensurate Transverse Anisotropy Induced by Disorder and Spin-Orbit-Vibron Coupling in Mn12-acetate

    Full text link
    It has been shown within density-functional theory that in Mn12_{12}-acetate there are effects due to disorder by solvent molecules and a coupling between vibrational and electronic degrees of freedom. We calculate the in-plane principal axes of the second-order anisotropy caused by the second effect and compare them with those of the fourth-order anisotropy due to the first effect. We find that the two types of the principal axes are not commensurate with each other, which results in a complete quenching of the tunnel-splitting oscillation as a function of an applied transverse field.Comment: Will be presented at MMM conference 200

    Low temperature microwave emission from molecular clusters

    Full text link
    We investigate the experimental detection of the electromagnetic radiation generated in the fast magnetization reversal in Mn12-acetate at low temperatures. In our experiments we used large single crystals and assemblies of several small single crystals of Mn12-acetate placed inside a cylindrical stainless steel waveguide in which an InSb hot electron device was also placed to detect the radiation. All this was set inside a SQUID magnetometer that allowed to change the magnetic field and measure the magnetic moment and the temperature of the sample as the InSb detected simultaneously the radiation emitted from the molecular magnets. Our data show a sequential process in which the fast inversion of the magnetic moment first occurs, then the radiation is detected by the InSb device, and finally the temperature of the sample increases during 15 ms to subsequently recover its original value in several hundreds of milliseconds.Comment: changed conten

    Definitive spectroscopic determination of the transverse interactions responsible for the magnetic quantum tunneling in Mn12-acetate

    Full text link
    We present detailed angle-dependent single crystal electron paramagnetic resonance (EPR) data for field rotations in the hard plane of the S=10 single molecule magnet Mn12-acetate. A clear four-fold variation in the resonance positions may be attributed to an intrinsic fourth order transverse anisotropy (O44). Meanwhile, a four-fold variation of the EPR lineshapes confirms a recently proposed model wherein disorder associated with the acetic acid of crystallization induces a locally varying quadratic (rhombic) transverse anisotropy (O22). These findings explain most aspects of the magnetic quantum tunneling observed in Mn12-acetate.Comment: 7 pages, including figures, accepted for publication in Phys. Rev. Let

    High frequency resonant experiments in Fe8_8 molecular clusters

    Full text link
    Precise resonant experiments on Fe8_{8} magnetic clusters have been conducted down to 1.2 K at various tranverse magnetic fields, using a cylindrical resonator cavity with 40 different frequencies between 37 GHz and 110 GHz. All the observed resonances for both single crystal and oriented powder, have been fitted by the eigenstates of the hamiltonian H=DSz2+ESx2gμBHS{\cal H}=-DS_z^2+ES_x^2-g\mu_B{\bf H}\cdot {\bf S}. We have identified the resonances corresponding to the coherent quantum oscillations for different orientations of spin S = 10.Comment: to appear in Phys.Rev. B (August 2000

    On the Energy Transfer Performance of Mechanical Nanoresonators Coupled with Electromagnetic Fields

    Get PDF
    We study the energy transfer performance in electrically and magnetically coupled mechanical nanoresonators. Using the resonant scattering theory, we show that magnetically coupled resonators can achieve the same energy transfer performance as for their electrically coupled counterparts, or even outperform them within the scale of interest. Magnetic and electric coupling are compared in the Nanotube Radio, a realistic example of a nano-scale mechanical resonator. The energy transfer performance is also discussed for a newly proposed bio-nanoresonator composed of a magnetosomes coated with a net of protein fibers.Comment: 9 Pages, 3 Figure
    corecore