6,168 research outputs found
21st century social work: reducing re-offending - key practice skills
This literature review was commissioned by the Scottish Executive’s Social Work Services Inspectorate in order to support the work of the 21st Century Social Work Review Group. Discussions in relation to the future arrangements for criminal justice social work raised issues about which disciplines might best encompass the requisite skills for reducing re-offending in the community. Rather than starting with what is known or understood about the skills of those professionals currently involved in such interventions, this study sought to start with the research evidence on effective work with offenders to reduce re-offending and then work its way back to the skills required to promote this outcome
Compact UWB Monopole for Multilayer Applications
A novel compact, dual layer UWB monopole antenna is presented. This low profile ultra-wideband antenna is fed by a 50 ? shielded strip-line with an array of metal vias making the conducting walls. A printed disc monopole with a circular cut is the radiating element. The dual layer, shielded strip line feed allows for integration in multilayer technologies. The ultra-wideband, monopole characteristics of the antenna are confirmed experimentally
Comparison of 3D scanned human models for off-body communications using motion capture
Body area networks are complex to analyze as there are several channel mechanisms occurring simultaneously, i.e. environmental multipath together with body motion and close coupling between worn antennas and human tissue. Electromagnetic (EM) simulation is an important tool since not all studies can be done on a real human. In order to gain insight into off-body communication involving a worn antenna, this paper uses a 3D animated model obtained from a 3D surface scanner and a motion capture system for full wave simulation of channels at 2.45 and 5.5GHz. To evaluate if the model can represent body area radio channels in general, a comparison of S21 of the simulated model with measurements from 5 other models of similar height to the main test subject is presented
Recommended from our members
Worst-Case Scenarios in Forecasting: How Bad Can Things Get?
Worst-Case Damage from a Blowout in the Gulf of Mexico According to news reports, the main contingency plan foresaw a blowout with a worst-case spill of 40 million gallons in total. During the first three months, millions of gallons have been gushing per day. Regulatory agencies based their efforts on worst-case scenarios that weren’t nearly worst case
Lattice Boltzmann simulations of a viscoelastic shear-thinning fluid
We present a hybrid lattice Boltzmann algorithm for the simulation of flow
glass-forming fluids, characterized by slow structural relaxation, at the level
of the Navier-Stokes equation. The fluid is described in terms of a nonlinear
integral constitutive equation, relating the stress tensor locally to the
history of flow. As an application, we present results for an integral
nonlinear Maxwell model that combines the effects of (linear) viscoelasticity
and (nonlinear) shear thinning. We discuss the transient dynamics of
velocities, shear stresses, and normal stress differences in planar
pressure-driven channel flow, after switching on (startup) and off (cessation)
of the driving pressure. This transient dynamics depends nontrivially on the
channel width due to an interplay between hydrodynamic momentum diffusion and
slow structural relaxation
Magnetic Susceptibility of an integrable anisotropic spin ladder system
We investigate the thermodynamics of a spin ladder model which possesses a
free parameter besides the rung and leg couplings. The model is exactly solved
by the Bethe Ansatz and exhibits a phase transition between a gapped and a
gapless spin excitation spectrum. The magnetic susceptibility is obtained
numerically and its dependence on the anisotropy parameter is determined. A
connection with the compounds KCuCl3, Cu2(C5H12N2)2Cl4 and (C5H12N)2CuBr4 in
the strong coupling regime is made and our results for the magnetic
susceptibility fit the experimental data remarkably well.Comment: 12 pages, 12 figures included, submitted to Phys. Rev.
Universality Class of the Reversible-Irreversible Transition in Sheared Suspensions
Collections of non-Brownian particles suspended in a viscous fluid and
subjected to oscillatory shear at very low Reynolds number have recently been
shown to exhibit a remarkable dynamical phase transition separating reversible
from irreversible behaviour as the strain amplitude or volume fraction are
increased. We present a simple model for this phenomenon, based on which we
argue that this transition lies in the universality class of the conserved DP
models or, equivalently, the Manna model. This leads to predictions for the
scaling behaviour of a large number of experimental observables. Non-Brownian
suspensions under oscillatory shear may thus constitute the first experimental
realization of an inactive-active phase transition which is not in the
universality class of conventional directed percolation.Comment: 4 pages, 2 figures, final versio
Navier-Stokes equations on the flat cylinder with vorticity production on the boundary
We study the two-dimensional Navier-Stokes system on a flat cylinder with the
usual Dirichlet boundary conditions for the velocity field u. We formulate the
problem as an infinite system of ODE's for the natural Fourier components of
the vorticity, and the boundary conditions are taken into account by adding a
vorticity production at the boundary. We prove equivalence to the original
Navier-Stokes system and show that the decay of the Fourier modes is
exponential for any positive time in the periodic direction, but it is only
power-like in the other direction.Comment: 25 page
Millimeter Wave Substrate Integrated Waveguide Antennas: Design and Fabrication Analysis
The paper presents a new concept in antenna design, whereby a photo-imageable thick-film process is used to integrate a waveguide antenna within a multilayer structure. This has yielded a very compact, high performance antenna working at high millimeter-wave (mm-wave) frequencies, with a high degree of repeatability and reliability in antenna construction. Theoretical and experimental results for 70 GHz mm-wave integrated antennas, fabricated using the new technique are presented. The antennas were formed from miniature slotted waveguide arrays using up to 18 layers of photo-imageable material. To enhance the electrical performance a novel folded waveguide array was also investigated. The fabrication process is analysed in detail and the critical issues involved in the fabrication cycle are discussed. The losses in the substrate integrated waveguide have been calculated. The performance of the new integrated antenna is compared to conventional metallic, air-filled waveguide antennas, and also to conventional microstrip antenna arrays operating at the same frequencies
- …
