5,779 research outputs found
Design, construction and long life endurance testing of cathode assemblies for use in microwave high-power transmitting tubes
The cathode life test program sponsored by NASA Lewis Research Center at Watkins-Johnson Company has been in continuous operation since 1972. Its primary objective has been to evaluate the long life capability of barium dispenser cathodes to produce emission current densities of 2 A sq. cm. or more in an operational environment simulating that of a highpower microwave tube. The life test vehicles were equipped with convergent flow electron guns, drift space tubes with solenoid magnets for electron beam confinement and water-cooled depressed collectors. A variety of cathode types has been tested, including GE Tungstate, Litton Impregnated, Philips Type B and M, Semicon types S and M, and Spectra-Mat Type M. Recent emphasis has been on monitoring the performance of Philips Type M cathodes at 2 A sq. cm. and Sprectra-Mat and Semicon Type M cathodes at 4 A sq. cm. These cathodes have been operated at a constant current of 616 mA and a cathode anode voltage on the order of 10 kV. Cathode temperatures were maintained at 1010 C true as measured from black body holes in the backs of the cathodes. This report presents results of the cathode life test program from July l982 through April l986. The results include hours of operation and performance data in the form of normalized emission current density versus temperature curves (Miram plots)
On sets of irreducible polynomials closed by composition
Let be a set of monic degree polynomials over a finite field
and let be the compositional semigroup generated by . In this
paper we establish a necessary and sufficient condition for to be
consisting entirely of irreducible polynomials. The condition we deduce depends
on the finite data encoded in a certain graph uniquely determined by the
generating set . Using this machinery we are able both to show
examples of semigroups of irreducible polynomials generated by two degree
polynomials and to give some non-existence results for some of these sets in
infinitely many prime fields satisfying certain arithmetic conditions
Unusual Higgs or Supersymmetry from Natural Electroweak Symmetry Breaking
This review provides an elementary discussion of electroweak symmetry
breaking in the minimal and the next-to-minimal supersymmetric models with the
focus on the fine-tuning problem -- the tension between natural electroweak
symmetry breaking and the direct search limit on the Higgs boson mass. Two
generic solutions of the fine-tuning problem are discussed in detail: models
with unusual Higgs decays; and models with unusual pattern of soft
supersymmetry breaking parameters.Comment: 23 pages, 6 figures; invited review by MPL
A Determination of the Hubble Constant from Cepheid Distances and a Model of the Local Peculiar Velocity Field
We present a measurement of the Hubble Constant based on Cepheid distances to
27 galaxies within 20 Mpc. We take the Cepheid data from published measurements
by the Hubble Telescope Key Project on the Distance Scale (H0KP). We calibrate
the Cepheid Period-Luminosity (PL) relation with data from over 700 Cepheids in
the LMC obtained by the OGLE collaboration; we assume an LMC distance modulus
of 18.50 mag (d=50.1 kpc). Using this PL calibration we obtain new distances to
the H0KP galaxies. We correct the redshifts of these galaxies for peculiar
velocities using two distinct velocity field models: the phenomenological model
of Tonry et al. and a model based on the IRAS density field and linear
gravitational instability theory. We combine the Cepheid distances with the
corrected redshifts for the 27 galaxies to derive H_0, the Hubble constant. The
results are H_0 = 85 +/- 5 km/s/Mpc (random error) at 95% confidence when the
IRAS model is used, and 92 +/- 5 km/s/Mpc when the phenomenological model is
used. The IRAS model is a better fit to the data and the Hubble constant it
returns is more reliable. Systematic error stems mainly from LMC distance
uncertainty which is not directly addressed by this paper. Our value of H_0 is
significantly larger than that quoted by the H0KP, H_0 = 71 +/- 6 km/s/Mpc.
Cepheid recalibration explains ~30% of this difference, velocity field analysis
accounts for ~70%. We discuss in detail possible reasons for this discrepancy
and future study needed to resolve it.Comment: 33 pages, 8 embedded figures. New table, 5 new references, text
revision
A Review Study on Fluoride Toxicity in Water and Fishes: Current Status, Toxicology and Remedial Measures
Fluoride is widely distributed in nature in many forms and its associated compounds have been used extensively but its limit in water is exceeding the permissible level. Excess of fluoride (>1.5 mg/l) in drinking water is harmful to the health. Fluoride toxicity is increasingly becoming a matter of great concern as many countries in the world have been declared as endemic for fluoride. This makes it imperative for scientists to focus on the precise toxic effects of fluoride on various soft tissues. Fluoride is toxic to all the system and causes oxidative stress in various tissues. When fluoride is ingested, approximately 93% is absorbed into the bloodstream. Contamination of drinking water due to fluoride is a severe health hazard problem. A good part of the material is excreted but the rest is deposited in the bones and teeth and is capable of causing a crippling skeletal fluorosis, non-skeletal fluorosis and dental fluorosis. There are various treatment technologies for removing fluoride from groundwater but these methods are very expensive. Besides using the water treatment techniques, various plants are having therapeutic properties to reduce the fluoride toxicity which is a cost effective to cure the fluoride induced toxicity
Z-prime Gauge Bosons at the Tevatron
We study the discovery potential of the Tevatron for a Z-prime gauge boson.
We introduce a parametrization of the Z-prime signal which provides a
convenient bridge between collider searches and specific Z-prime models. The
cross section for p pbar -> Z-prime X -> l^+ l^- X depends primarily on the
Z-prime mass and the Z-prime decay branching fraction into leptons times the
average square coupling to up and down quarks. If the quark and lepton masses
are generated as in the standard model, then the Z-prime bosons accessible at
the Tevatron must couple to fermions proportionally to a linear combination of
baryon and lepton numbers in order to avoid the limits on Z--Z-prime mixing.
More generally, we present several families of U(1) extensions of the standard
model that include as special cases many of the Z-prime models discussed in the
literature. Typically, the CDF and D0 experiments are expected to probe
Z-prime-fermion couplings down to 0.1 for Z-prime masses in the 500--800 GeV
range, which in various models would substantially improve the limits set by
the LEP experiments.Comment: 34 pages, 13 figure
- …
