947 research outputs found
Legal and Extra-Legal Determinants of Detention Sentences in a Juvenile Court: A Research Note
A major limitation of research concerning juvenile detention commitments is the over-riding focus on pre-adjudicatory detention. This period of confinement applies only to youths held in secure custody pending court appearance. The purpose of this investigation was tp broaden the understanding of detention by focusing on post-adjudicatory detention commitment, which is a court sentence, and the factors influencing the decision. Data were derived from the records of a random sample of 394 youths processed by a juvenile court between 1990 and 1991. Preliminary results show that a combination of legal and extra-Iegal factors play a significant role in post-adjudicatory detention decisions. The implications of these findings are explored
Improved Method for the Determination of Phospholipase A2 Catalytic Activity Concentration in Human Serum and Ascites
Peer Reviewe
Adjoint bulk scalars and supersymmetric unification in the presence of extra dimensions
There are several advantages of introducing adjoint superfields at
intermediate energies around GeV. Such as (i) gauge couplings still
unify (ii) neutrino masses and mixings are produced (iii) primordial lepton
asymmetry can be produced. We point out that if adjoint scalars have bulk
excitations along with gauge bosons whereas fermions and the doublet scalar
live on boundary then N=2 supersymmetric beta functions vanish.
Thus even if extra dimensions open up at an intermediate scale and all
N=2 Yang-Mills fields as well as N=2 matter fields in the adjoint
representation propagate in the bulk, still gauge couplings renormalize beyond
just like they do in 4-dimensions with adjoint scalars. Consequently
unification is achieved in the presence to extra dimensions, mass scales are
determined uniquely via Renormalization Group Equations(RGE) and unification
scale remains high enough to suppress proton decay. This scenario can be
falsified if we get signatures of extra dimensions at low energy.Comment: New references added. This version will appear in Phys. Rev.
Monolithic Al2O3 Xerogels with Hierarchical Meso‐/Macropore System as Catalyst Supports for Methanation of CO<sub>2</sub>
Global warming and recurrent mass bleaching of corals
During 2015–2016, record temperatures triggered a pan-tropical episode of coral bleaching, the third global-scale event since mass bleaching was first documented in the 1980s. Here we examine how and why the severity of recurrent major bleaching events has varied at multiple scales, using aerial and underwater surveys of Australian reefs combined with satellite-derived sea surface temperatures. The distinctive geographic footprints of recurrent bleaching on the Great Barrier Reef in 1998, 2002 and 2016 were determined by the spatial pattern of sea temperatures in each year. Water quality and fishing pressure had minimal effect on the unprecedented bleaching in 2016, suggesting that local protection of reefs affords little or no resistance to extreme heat. Similarly, past exposure to bleaching in 1998 and 2002 did not lessen the severity of bleaching in 2016. Consequently, immediate global action to curb future warming is essential to secure a future for coral reefs
Automated pathway and reaction prediction facilitates in silico identification of unknown metabolites in human cohort studies
Identification of metabolites in non-targeted metabolomics continues to be a bottleneck in metabolomics studies in large human cohorts. Unidentified metabolites frequently emerge in the results of association studies linking metabolite levels to, for example, clinical phenotypes. For further analyses these unknown metabolites must be identified. Current approaches utilize chemical information, such as spectral details and fragmentation characteristics to determine components of unknown metabolites. Here, we propose a systems biology model exploiting the internal correlation structure of metabolite levels in combination with existing biochemical and genetic information to characterize properties of unknown molecules. Levels of 758 metabolites (439 known, 319 unknown) in human blood samples of 2279 subjects were measured using a non-targeted metabolomics platform (LC-MS and GC-MS). We reconstructed the structure of biochemical pathways that are imprinted in these metabolomics data by building an empirical network model based on 1040 significant partial correlations between metabolites. We further added associations of these metabolites to 134 genes from genome-wide association studies as well as reactions and functional relations to genes from the public database Recon 2 to the network model. From the local neighborhood in the network, we were able to predict the pathway annotation of 180 unknown metabolites. Furthermore, we classified 100 pairs of known and unknown and 45 pairs of unknown metabolites to 21 types of reactions based on their mass differences. As a proof of concept, we then looked further into the special case of predicted dehydrogenation reactions leading us to the selection of 39 candidate molecules for 5 unknown metabolites. Finally, we could verify 2 of those candidates by applying LC-MS analyses of commercially available candidate substances. The formerly unknown metabolites X-13891 and X-13069 were shown to be 2-dodecendioic acid and 9-tetradecenoic acid, respectively. Our data-driven approach based on measured metabolite levels and genetic associations as well as information from public resources can be used alone or together with methods utilizing spectral patterns as a complementary, automated and powerful method to characterize unknown metabolites
Global human footprint on the linkage between biodiversity and ecosystem functioning in reef fishes
Copyright: © 2011 Mora et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.Difficulties in scaling up theoretical and experimental results have raised controversy over the consequences of biodiversity loss for the functioning of natural ecosystems. Using a global survey of reef fish assemblages, we show that in contrast to previous theoretical and experimental studies, ecosystem functioning (as measured by standing biomass) scales in a non-saturating manner with biodiversity (as measured by species and functional richness) in this ecosystem. Our field study also shows a significant and negative interaction between human population density and biodiversity on ecosystem functioning (i.e., for the same human density there were larger reductions in standing biomass at more diverse reefs). Human effects were found to be related to fishing, coastal development, and land use stressors, and currently affect over 75% of the world's coral reefs. Our results indicate that the consequences of biodiversity loss in coral reefs have been considerably underestimated based on existing knowledge and that reef fish assemblages, particularly the most diverse, are greatly vulnerable to the expansion and intensity of anthropogenic stressors in coastal areas
- …
