2,982 research outputs found
Neutrophil gelatinase-associated lipocalin: its response to hypoxia and association with acute mountain sickness.
Acute Mountain Sickness (AMS) is a common clinical challenge at high altitude (HA). A point-of-care biochemical marker for AMS could have widespread utility. Neutrophil gelatinase-associated lipocalin (NGAL) rises in response to renal injury, inflammation and oxidative stress. We investigated whether NGAL rises with HA and if this rise was related to AMS, hypoxia or exercise. NGAL was assayed in a cohort (n = 22) undertaking 6 hours exercise at near sea-level (SL); a cohort (n = 14) during 3 hours of normobaric hypoxia (FiO2 11.6%) and on two trekking expeditions (n = 52) to over 5000 m. NGAL did not change with exercise at SL or following normobaric hypoxia. During the trekking expeditions NGAL levels (ng/ml, mean ± sd, range) rose significantly (P < 0.001) from 68 ± 14 (60-102) at 1300 m to 183 ± 107 (65-519); 143 ± 66 (60-315) and 150 ± 71 (60-357) at 3400 m, 4270 m and 5150 m respectively. At 5150 m there was a significant difference in NGAL between those with severe AMS (n = 7), mild AMS (n = 16) or no AMS (n = 23): 201 ± 34 versus 171 ± 19 versus 124 ± 12 respectively (P = 0.009 for severe versus no AMS; P = 0.026 for mild versus no AMS). In summary, NGAL rises in response to prolonged hypobaric hypoxia and demonstrates a relationship to the presence and severity of AMS
Barriers and Disparities in Emergency Medical Services 911 Calls for Stroke Symptoms in the United States Adult Population: 2009 BRFSS Survey
Introduction: This study examines barriers and disparities in the intentions of American citizens, when dealing with stroke symptoms, to call 911. This study hypothesizes that low socioeconomic populations are less likely to call 911 in response to stroke recognition. Methods: The study is a cross-sectional design analyzing data from the Centers for Disease Control’s 2009 Behavioral Risk Factor Surveillance Survey, collected through a telephone-based survey from 18 states and the District of Columbia. The study identified the 5 most evident stroke-warning symptoms based on those given by the American Stroke Association. We conducted appropriate weighting procedures to account for the complex survey design. Results: A total of 131,988 respondents answered the following question: “If you thought someone was having a heart attack or a stroke, what is the first thing you would do?” A majority of those who said they would call 911 were insured (85.1%), had good health (84.1%), had no stroke history (97.3%), had a primary care physician (PCP) (81.4%), and had no burden of medical costs (84.9%). Those less likely to call 911 were found in the following groups: 65 years or older, men, other race, unmarried, less than or equal to high school degree, less than 50,000 family income (p\u3c0.0001 by X2 tests). The only factors significantly associated with “would call 911” were age, sex, race/ethnicity, marital status, and previous history of strokes. Conclusion: Barriers and disparities exist among subpopulations of different socioeconomic statuses. This study suggests that some potential stroke victims could have limited access to EMS services. Greater effort targeting certain populations is needed to motivate citizens to call 911. [West J Emerg Med. 2014;15(2):251–259]
GPU-based simulations of fracture in idealized brick and mortar composites
Stiff ceramic platelets (or bricks) that are aligned and bonded to a second ductile phase with low volume fraction (mortar) are a promising pathway to produce stiff, high-toughness composites. For certain ranges of constituent properties, including those of some synthetic analogs to nacre, one can demonstrate that the deformation is dominated by relative brick motions. This paper describes simulations of fracture that explicitly track the motions of individual rigid bricks in an idealized microstructure; cohesive tractions acting between the bricks introduce elastic, plastic and rupture behaviors. Results are presented for the stresses and damage near macroscopic cracks with different brick orientations relative to the loading orientation. The anisotropic macroscopic initiation toughness is computed for small-scale yielding conditions and is shown to be independent of specimen geometry and loading configuration. The results are shown to be in agreement with previously published experiments on synthetic nacre
Bioengineered Nisin A Derivatives with Enhanced Activity against Both Gram Positive and Gram Negative Pathogens
peer-reviewedNisin is a bacteriocin widely utilized in more than 50 countries as a safe and natural antibacterial food preservative. It is the most extensively studied bacteriocin, having undergone decades of bioengineering with a view to improving function and physicochemical properties. The discovery of novel nisin variants with enhanced activity against clinical and foodborne pathogens has recently been described. We screened a randomized bank of nisin A producers and identified a variant with a serine to glycine change at position 29 (S29G), with enhanced efficacy against S. aureus SA113. Using a site-saturation mutagenesis approach we generated three more derivatives (S29A, S29D and S29E) with enhanced activity against a range of Gram positive drug resistant clinical, veterinary and food pathogens. In addition, a number of the nisin S29 derivatives displayed superior antimicrobial activity to nisin A when assessed against a range of Gram negative food-associated pathogens, including E. coli, Salmonella enterica serovar Typhimurium and Cronobacter sakazakii. This is the first report of derivatives of nisin, or indeed any lantibiotic, with enhanced antimicrobial activity against both Gram positive and Gram negative bacteria.This work was supported by the Irish Government under the National Development Plan, through Science Foundation Ireland Investigator awards (10/IN.1/B3027) and (06/IN.1/B98) (http://www.sfi.ie)
Strained tetragonal states and Bain paths in metals
Paths of tetragonal states between two phases of a material, such as bcc and
fcc, are called Bain paths. Two simple Bain paths can be defined in terms of
special imposed stresses, one of which applies directly to strained epitaxial
films. Each path goes far into the range of nonlinear elasticity and reaches a
range of structural parameters in which the structure is inherently unstable.
In this paper we identify and analyze the general properties of these paths by
density functional theory. Special examples include vanadium, cobalt and
copper, and the epitaxial path is used to identify an epitaxial film as related
uniquely to a bulk phase.Comment: RevTeX, 4 pages, 4 figures, submitted to Phys. Rev. Let
Surface relaxation and ferromagnetism of Rh(001)
The significant discrepancy between first-principles calculations and
experimental analyses for the relaxation of the (001) surface of rhodium has
been a puzzle for some years. In this paper we present density functional
theory calculations using the local-density approximation and the generalized
gradient approximation of the exchange-correlation functional. We investigate
the thermal expansion of the surface and the possibility of surface magnetism.
The results throw light on several, hitherto overlooked, aspects of metal
surfaces. We find, that, when the free energy is considered, density-functional
theory provides results in good agreement with experiments.Comment: 6 pages, 4 figures, submitted to Phys. Rev. Lett. (April 28, 1996
Direct comparison of nick-joining activity of the nucleic acid ligases from bacteriophage T4
The genome of bacteriophage T4 encodes three polynucleotide ligases, which seal the backbone of nucleic acids during infection of host bacteria. The T4Dnl (T4 DNA ligase) and two RNA ligases [T4Rnl1 (T4 RNA ligase 1) and T4Rnl2] join a diverse array of substrates, including nicks that are present in double-stranded nucleic acids, albeit with different efficiencies. To unravel the biochemical and functional relationship between these proteins, a systematic analysis of their substrate specificity was performed using recombinant proteins. The ability of each protein to ligate 20 bp double-stranded oligonucleotides containing a single-strand break was determined. Between 4 and 37 °C, all proteins ligated substrates containing various combinations of DNA and RNA. The RNA ligases ligated a more diverse set of substrates than T4Dnl and, generally, T4Rnl1 had 50-1000-fold lower activity than T4Rnl2. In assays using identical conditions, optimal ligation of all substrates was at pH 8 for T4Dnl and T4Rnl1 and pH 7 for T4Rnl2, demonstrating that the protein dictates the pH optimum for ligation. All proteins ligated a substrate containing DNA as the unbroken strand, with the nucleotides at the nick of the broken strand being RNA at the 3'-hydroxy group and DNA at the 5'-phosphate. Since this RNA-DNA hybrid was joined at a similar maximal rate by T4Dnl and T4Rnl2 at 37 °C, we consider the possibility that this could be an unexpected physiological substrate used during some pathways of 'DNA repair'
Meanings of epilepsy in its sociocultural context and implications for stigma: Findings from ethnographic studies in local communities in China and Vietnam
We investigated beliefs about the causes, course, and treatment of epilepsy and its impact on quality of life (QOL) in key target groups, using “mini-ethnographies” involving 141 in-depth interviews and 12 focus groups in China, and 84 in-depth interviews and 16 focus groups in Vietnam. Data were analyzed thematically, using a qualitative data analysis package. In both countries, beliefs about causes and triggers of epilepsy and seizures were a complex interweaving of Western, traditional, and folk medicine concepts. Epilepsy was understood to be chronic, not curable, but controllable, and was seen as enormously socially disruptive, with wide-ranging impact on QOL. Our findings suggest a more “embodied” and benign set of theories about epilepsy than in some other cultural contexts; nonetheless, people with epilepsy are still seen as having low social value and face social rejection. By exploring meanings attached to epilepsy in these two cultural contexts, we have clarified reasons behind previously documented negative attitudes and foci for future intervention studies
Dopamine D_2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive 4 nicotinic receptors via a cholinergic-dependent mechanism
Recent studies suggest that high-affinity neuronal nicotinic acetylcholine receptors (nAChRs) containing α4 and β2 subunits (α4β2*) functionally interact with G-protein-coupled dopamine (DA) D_2 receptors in basal ganglia. We hypothesized that if a functional interaction between these receptors exists, then mice expressing an M2 point mutation (Leu9'Ala) rendering 4 nAChRs hypersensitive to ACh may exhibit altered sensitivity to a D_2-receptor agonist. When challenged with the D_(2)R agonist, quinpirole (0.5–10 mg/kg), Leu9'Ala mice, but not wild-type (WT) littermates, developed severe, reversible motor impairment characterized by rigidity, catalepsy, akinesia, and tremor. While striatal DA tissue content, baseline release, and quinpirole-induced DA depletion did not differ between Leu9'Ala and WT mice, quinpirole dramatically increased activity of cholinergic striatal interneurons only in mutant animals, as measured by increased c-Fos expression in choline acetyltransferase (ChAT)-positive interneurons. Highlighting the importance of the cholinergic system in this mouse model, inhibiting the effects of ACh by blocking muscarinic receptors, or by selectively activating hypersensitive nAChRs with nicotine, rescued motor symptoms. This novel mouse model mimics the imbalance between striatal DA/ACh function associated with severe motor impairment in disorders such as Parkinson’s disease, and the data suggest that a D_(2)R–α4*-nAChR functional interaction regulates cholinergic interneuron activity.—Zhao-Shea, R., Cohen, B. N., Just, H., McClure-Begley, T., Whiteaker, P., Grady, S. R., Salminen, O., Gardner, P. D., Lester, H. A., Tapper, A. R. Dopamine D2-receptor activation elicits akinesia, rigidity, catalepsy, and tremor in mice expressing hypersensitive α4 nicotinic receptors via a cholinergic-dependent mechanism
- …
