372 research outputs found

    What Else (Besides the Syllabus) Should Students Learn in Introductory Physics?

    Get PDF
    We have surveyed what various groups of instructors and students think students should learn in introductory physics. We started with a Delphi Study based on interviews with experts, then developed orthogonal responses to “what should we teach non‐physics majors besides the current syllabus topics?” AAPT attendees, atomic researchers, and PERC08 attendees were asked for their selections. All instructors rated “sense‐making of the answer” very highly and expert problem solving highly. PERers favored epistemology over problem solving, and atomic researchers “physics comes from a few principles.” Students at three colleges had preferences anti‐aligned with their teachers, preferring more modern topics, and the relationship of physics to everyday life and also to society (the only choice with instructor agreement), but not problem solving or sense‐making. Conclusion #1: we must show students how old physics is relevant to their world. Conclusion #2: significant course reform must start by reaching consensus on what to teach and how to hold students’ interest (then discuss techniques to teach it).National Science Foundation (U.S.) (NSF grant PHY-0757931

    Developing My Perspectives on Scaffolding and Problem-Based Learning: A Retrospective View

    Get PDF
    In this paper, I describe the iterative development of my perspectives on scaffolding and problem-based learning through interactions with other scholars and research. Such influences include doctoral experiences, funded projects, and exposures to research from a variety of traditions

    Collaborative Research: Scaffolding Pre-service, Early Childhood Teachers to Debug Block-based Programming

    Get PDF

    Instructional Scaffolding in STEM Education: Strategies and Efficacy Evidence

    Get PDF
    science education; educational technology; learning and instructio

    Developmental expression of non-coding RNAs in Chlamydia trachomatis during normal and persistent growth

    Get PDF
    Chlamydia trachomatis is an obligate intracellular bacterium that exhibits a unique biphasic developmental cycle that can be disrupted by growth in the presence of IFN-γ and β-lactams, giving rise to an abnormal growth state termed persistence. Here we have examined the expression of a family of non-coding RNAs (ncRNAs) that are differentially expressed during the developmental cycle and the induction of persistence and reactivation. ncRNAs were initially identified using an intergenic tiling microarray and were confirmed by northern blotting. ncRNAs were mapped, characterized and compared with the previously described chlamydial ncRNAs. The 5′- and 3′-ends of the ncRNAs were determined using an RNA circularization procedure. Promoter predictions indicated that all ncRNAs were expressed from σ66 promoters and eight ncRNAs contained non-templated 3′-poly-A or poly-AG additions. Expression of ncRNAs was studied by northern blotting during (i) the normal developmental cycle, (ii) IFN-γ-induced persistence and (iii) carbenicillin-induced persistence. Differential temporal expression during the developmental cycle was seen for all ncRNAs and distinct differences in expression were seen during IFN-γ and carbenicillin-induced persistence and reactivation. A heterologous co-expression system was used to demonstrate that one of the identified ncRNAs regulated the expression of FtsI by inducing degradation of ftsI mRNA

    Selective amplification of Brucella melitensis mRNA from a mixed host-pathogen total RNA

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Brucellosis is a worldwide anthropozoonotic disease caused by an in vivo intracellular pathogen belonging to genus <it>Brucella</it>. The characterization of brucelae transcriptome's during host-pathogen interaction has been limited due to the difficulty of obtaining an adequate quantity of good quality eukaryotic RNA-free pathogen RNA for downstream applications.</p> <p>Findings</p> <p>Here, we describe a combined protocol to prepare RNA from intracellular <it>B. melitensis </it>in a quantity and quality suitable for pathogen gene expression analysis. Initially, <it>B. melitensis </it>total RNA was enriched from a host:pathogen mixed RNA sample by reducing the eukaryotic RNA..Then, to increase the <it>Brucella </it>RNA concentration and simultaneously minimize the contaminated host RNA in the mixed sample, a specific primer set designed to anneal to all <it>B. melitensis </it>ORF allows the selective linear amplification of sense-strand prokaryotic transcripts in a previously enriched RNA sample.</p> <p>Conclusion</p> <p>The novelty of the method we present here allows analysis of the gene expression profile of <it>B. melitensis </it>when limited amounts of pathogen RNA are present, and is potentially applicable to both <it>in vivo </it>and <it>in vitro </it>models of infection, even at early infection time points.</p

    An iterative strategy combining biophysical criteria and duration hidden Markov models for structural predictions of Chlamydia trachomatis σ66 promoters

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Promoter identification is a first step in the quest to explain gene regulation in bacteria. It has been demonstrated that the initiation of bacterial transcription depends upon the stability and topology of DNA in the promoter region as well as the binding affinity between the RNA polymerase σ-factor and promoter. However, promoter prediction algorithms to date have not explicitly used an ensemble of these factors as predictors. In addition, most promoter models have been trained on data from <it>Escherichia coli</it>. Although it has been shown that transcriptional mechanisms are similar among various bacteria, it is quite possible that the differences between <it>Escherichia coli </it>and <it>Chlamydia trachomatis </it>are large enough to recommend an organism-specific modeling effort.</p> <p>Results</p> <p>Here we present an iterative stochastic model building procedure that combines such biophysical metrics as DNA stability, curvature, twist and stress-induced DNA duplex destabilization along with duration hidden Markov model parameters to model <it>Chlamydia trachomatis </it>σ<sup>66 </sup>promoters from 29 experimentally verified sequences. Initially, iterative duration hidden Markov modeling of the training set sequences provides a scoring algorithm for <it>Chlamydia trachomatis </it>RNA polymerase σ<sup>66</sup>/DNA binding. Subsequently, an iterative application of Stepwise Binary Logistic Regression selects multiple promoter predictors and deletes/replaces training set sequences to determine an optimal training set. The resulting model predicts the final training set with a high degree of accuracy and provides insights into the structure of the promoter region. Model based genome-wide predictions are provided so that optimal promoter candidates can be experimentally evaluated, and refined models developed. Co-predictions with three other algorithms are also supplied to enhance reliability.</p> <p>Conclusion</p> <p>This strategy and resulting model support the conjecture that DNA biophysical properties, along with RNA polymerase σ-factor/DNA binding collaboratively, contribute to a sequence's ability to promote transcription. This work provides a baseline model that can evolve as new <it>Chlamydia trachomatis </it>σ<sup>66 </sup>promoters are identified with assistance from the provided genome-wide predictions. The proposed methodology is ideal for organisms with few identified promoters and relatively small genomes.</p

    Fluorescence Lifetime Imaging Unravels C. trachomatis Metabolism and Its Crosstalk with the Host Cell

    Get PDF
    Chlamydia trachomatis is an obligate intracellular bacterium that alternates between two metabolically different developmental forms. We performed fluorescence lifetime imaging (FLIM) of the metabolic coenzymes, reduced nicotinamide adenine dinucleotides [NAD(P)H], by two-photon microscopy for separate analysis of host and pathogen metabolism during intracellular chlamydial infections. NAD(P)H autofluorescence was detected inside the chlamydial inclusion and showed enhanced signal intensity on the inclusion membrane as demonstrated by the co-localization with the 14-3-3β host cell protein. An increase of the fluorescence lifetime of protein-bound NAD(P)H [τ2-NAD(P)H] inside the chlamydial inclusion strongly correlated with enhanced metabolic activity of chlamydial reticulate bodies during the mid-phase of infection. Inhibition of host cell metabolism that resulted in aberrant intracellular chlamydial inclusion morphology completely abrogated the τ2-NAD(P)H increase inside the chlamydial inclusion. τ2-NAD(P)H also decreased inside chlamydial inclusions when the cells were treated with IFNγ reflecting the reduced metabolism of persistent chlamydiae. Furthermore, a significant increase in τ2-NAD(P)H and a decrease in the relative amount of free NAD(P)H inside the host cell nucleus indicated cellular starvation during intracellular chlamydial infection. Using FLIM analysis by two-photon microscopy we could visualize for the first time metabolic pathogen-host interactions during intracellular Chlamydia trachomatis infections with high spatial and temporal resolution in living cells. Our findings suggest that intracellular chlamydial metabolism is directly linked to cellular NAD(P)H signaling pathways that are involved in host cell survival and longevity
    corecore