6,753 research outputs found
On a conjecture regarding Fisher information
Fisher's information measure plays a very important role in diverse areas of
theoretical physics. The associated measures as functionals of quantum
probability distributions defined in, respectively, coordinate and momentum
spaces, are the protagonists of our present considerations. The product of them
has been conjectured to exhibit a non trivial lower bound in [Phys. Rev. A
(2000) 62 012107]. We show here that such is not the case. This is illustrated,
in particular, for pure states that are solutions to the free-particle
Schr\"odinger equation. In fact, we construct a family of counterexamples to
the conjecture, corresponding to time-dependent solutions of the free-particle
Schr\"odinger equation. We also give a new conjecture regarding any
normalizable time-dependent solution of this equation.Comment: 4 pages; revised equations, results unchange
Urinalysis and pre-renal acute kidney injury: time to move on.
Urinary indices are classically believed to allow differentiation of transient (or pre-renal) acute kidney injury (AKI) from persistent (or acute tubular necrosis) AKI. However, the data validating urinalysis in critically ill patients are weak. In the previous issue of Critical Care, Pons and colleagues demonstrate in a multicenter observational study that sodium and urea excretion fractions as well as urinary over plasma ratios performed poorly as diagnostic tests to separate such entities. This study confirms the limited diagnostic and prognostic ability of urine testing. Together with other studies, this study raises more fundamental questions about the value, meaning and pathophysiologic validity of the pre-renal AKI paradigm and suggests that AKI (like all other forms of organ injury) is a continuum of injury that cannot be neatly divided into functional (pre-renal or transient) or structural (acute tubular necrosis or persistent)
Dispersion of Klauder's temporally stable coherent states for the hydrogen atom
We study the dispersion of the "temporally stable" coherent states for the
hydrogen atom introduced by Klauder. These are states which under temporal
evolution by the hydrogen atom Hamiltonian retain their coherence properties.
We show that in the hydrogen atom such wave packets do not move
quasi-classically; i.e., they do not follow with no or little dispersion the
Keplerian orbits of the classical electron. The poor quantum-classical
correspondence does not improve in the semiclassical limit.Comment: 6 pages, 2 figure
Entanglement degradation in the solid state: interplay of adiabatic and quantum noise
We study entanglement degradation of two non-interacting qubits subject to
independent baths with broadband spectra typical of solid state nanodevices. We
obtain the analytic form of the concurrence in the presence of adiabatic noise
for classes of entangled initial states presently achievable in experiments. We
find that adiabatic (low frequency) noise affects entanglement reduction
analogously to pure dephasing noise. Due to quantum (high frequency) noise,
entanglement is totally lost in a state-dependent finite time. The possibility
to implement on-chip both local and entangling operations is briefly discussed.Comment: Replaced with published version. Minor change
Revival of quantum correlations without system-environment back-action
Revivals of quantum correlations have often been explained in terms of
back-action on quantum systems by their quantum environment(s). Here we
consider a system of two independently evolving qubits, each locally
interacting with a classical random external field. The environments of the
qubits are also independent, and there is no back-action on the qubits.
Nevertheless, entanglement, quantum discord and classical correlations between
the two qubits may revive in this model. We explain the revivals in terms of
correlations in a classical-quantum state of the environments and the qubits.
Although classical states cannot store entanglement on their own, they can play
a role in storing and reviving entanglement. It is important to know how the
absence of back-action, or modelling an environment as classical, affects the
kind of system time evolutions one is able to describe. We find a class of
global time evolutions where back-action is absent and for which there is no
loss of generality in modelling the environment as classical. Finally, we show
that the revivals can be connected with the increase of a parameter used to
quantify non-Markovianity of the single-qubit dynamics.Comment: 8 pages, 4 figures; this version to appear in Phys. Rev.
Classical Evolution of Quantum Elliptic States
The hydrogen atom in weak external fields is a very accurate model for the
multiphoton excitation of ultrastable high angular momentum Rydberg states, a
process which classical mechanics describes with astonishing precision. In this
paper we show that the simplest treatment of the intramanifold dynamics of a
hydrogenic electron in external fields is based on the elliptic states of the
hydrogen atom, i.e., the coherent states of SO(4), which is the dynamical
symmetry group of the Kepler problem. Moreover, we also show that classical
perturbation theory yields the {\it exact} evolution in time of these quantum
states, and so we explain the surprising match between purely classical
perturbative calculations and experiments. Finally, as a first application, we
propose a fast method for the excitation of circular states; these are
ultrastable hydrogenic eigenstates which have maximum total angular momentum
and also maximum projection of the angular momentum along a fixed direction. %Comment: 8 Pages, 2 Figures. Accepted for publication in Phys. Rev.
Clinical review: Optimal dose of continuous renal replacement therapy in acute kidney injury
Continuous renal replacement therapy (CRRT) is the preferred treatment for acute kidney injury in intensive care units (ICUs) throughout much of the world. Despite the widespread use of CRRT, controversy and center-specific practice variation in the clinical application of CRRT continue. In particular, whereas two single-center studies have suggested survival benefit from delivery of higher-intensity CRRT to patients with acute kidney injury in the ICU, other studies have been inconsistent in their results. Now, however, two large multi-center randomized controlled trials - the Veterans Affairs/National Institutes of Health Acute Renal Failure Trial Network (ATN) study and the Randomized Evaluation of Normal versus Augmented Level (RENAL) Replacement Therapy Study - have provided level 1 evidence that effluent flow rates above 25 mL/kg per hour do not improve outcomes in patients in the ICU. In this review, we discuss the concept of dose of CRRT, its relationship with clinical outcomes, and what target optimal dose of CRRT should be pursued in light of the high-quality evidence now available
- …
