70 research outputs found

    SARS-CoV-2 and Guillain-Barré syndrome: AIDP variant with a favourable outcome.

    Get PDF
    The spectrum of COVID-19, caused by severe acute respiratory syndrome coronavirus 2 infection (SARS-CoV-2), includes different neurologic manifestations of the central and peripheral nervous system. From March through April 2020, in two university hospitals located in western Switzerland, we examined three patients with Guillain-Barré syndrome (GBS) following SARS-CoV-2. These cases were characterized by a primary demyelinating electrophysiological pattern (Acute inflammatory demyelinating polyneuropathy or AIDP) and a less severe disease course compared to recently published case series. Clinical improvement was observed in all patients at week five. One patient was discharged from hospital after full recovery with persistence of minor neurological signs (areflexia). Two of the three patients remained hospitalized: one was able to walk and the other could stand up with assistance. We report three cases of typical GBS (AIDP) occurring after SARS-CoV-2 infection and presenting with a favourable clinical course. Given the interval between COVID-19-related symptoms and neurological manifestations (mean of 15 days) we postulate a secondary immune-mediated mechanism rather than direct viral damage

    Human stem cell-derived neurons and astrocytes to detect novel auto-reactive IgG response in immune-mediated neurological diseases.

    Get PDF
    Up to 46% of patients with presumed autoimmune limbic encephalitis are seronegative for all currently known central nervous system (CNS) antigens. We developed a cell-based assay (CBA) to screen for novel neural antibodies in serum and cerebrospinal fluid (CSF) using neurons and astrocytes derived from human-induced pluripotent stem cells (hiPSCs). Human iPSC-derived astrocytes or neurons were incubated with serum/CSF from 99 patients [42 with inflammatory neurological diseases (IND) and 57 with non-IND (NIND)]. The IND group included 11 patients with previously established neural antibodies, six with seronegative neuromyelitis optica spectrum disorder (NMOSD), 12 with suspected autoimmune encephalitis/paraneoplastic syndrome (AIE/PNS), and 13 with other IND (OIND). IgG binding to fixed CNS cells was detected using fluorescently-labeled antibodies and analyzed through automated fluorescence measures. IgG neuronal/astrocyte reactivity was further analyzed by flow cytometry. Peripheral blood mononuclear cells (PBMCs) were used as CNS-irrelevant control target cells. Reactivity profile was defined as positive using a Robust regression and Outlier removal test with a false discovery rate at 10% following each individual readout. Using our CBA, we detected antibodies recognizing hiPSC-derived neural cells in 19/99 subjects. Antibodies bound specifically to astrocytes in nine cases, to neurons in eight cases, and to both cell types in two cases, as confirmed by microscopy single-cell analyses. Highlighting the significance of our comprehensive 96-well CBA assay, neural-specific antibody binding was more frequent in IND (15 of 42) than in NIND patients (4 of 57) (Fisher's exact test, p = 0.0005). Two of four AQP4+ NMO and four of seven definite AIE/PNS with intracellular-reactive antibodies [1 GFAP astrocytopathy, 2 Hu+, 1 Ri+ AIE/PNS)], as identified in diagnostic laboratories, were also positive with our CBA. Most interestingly, we showed antibody-reactivity in two of six seronegative NMOSD, six of 12 probable AIE/PNS, and one of 13 OIND. Flow cytometry using hiPSC-derived CNS cells or PBMC-detected antibody binding in 13 versus zero patients, respectively, establishing the specificity of the detected antibodies for neural tissue. Our unique hiPSC-based CBA allows for the testing of novel neuron-/astrocyte-reactive antibodies in patients with suspected immune-mediated neurological syndromes, and negative testing in established routine laboratories, opening new perspectives in establishing a diagnosis of such complex diseases

    Encephalopathies Associated With Severe COVID-19 Present Neurovascular Unit Alterations Without Evidence for Strong Neuroinflammation.

    Get PDF
    Coronavirus disease (COVID-19) has been associated with a large variety of neurologic disorders. However, the mechanisms underlying these neurologic complications remain elusive. In this study, we aimed at determining whether neurologic symptoms were caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) direct infection or by either systemic or local proinflammatory mediators. In this cross-sectional study, we checked for SARS-CoV-2 RNA by quantitative reverse transcription PCR, SARS-CoV-2-specific antibodies, and 49 cytokines/chemokines/growth factors (by Luminex) in the CSF +/- sera of a cohort of 22 COVID-19 patients with neurologic presentation and 55 neurologic control patients (inflammatory neurologic disorder [IND], noninflammatory neurologic disorder, and MS). We detected anti-SARS-CoV-2 immunoglobulin G in patients with severe COVID-19 with signs of intrathecal synthesis for some of them. Of the 4 categories of tested patients, the CSF of IND exhibited the highest level of cytokines, chemokines, and growth factors. By contrast, patients with COVID-19 did not present overall upregulation of inflammatory mediators in the CSF. However, patients with severe COVID-19 (intensive care unit patients) exhibited higher concentrations of CCL2, CXCL8, and vascular endothelium growth factor A (VEGF-A) in the CSF than patients with a milder form of COVID-19. In addition, we could show that intrathecal CXCL8 synthesis was linked to an elevated albumin ratio and correlated with the increase of peripheral inflammation (serum hepatocyte growth factor [HGF] and CXCL10). Our results do not indicate active replication of SARS-CoV-2 in the CSF or signs of massive inflammation in the CSF compartment but highlight a specific impairment of the neurovascular unit linked to intrathecal production of CXCL8

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis.

    Get PDF
    Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    BACKGROUND: Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. METHODS: We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. RESULTS: We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67-82]), than encephalopathy (54% [42-65]). Intensive care use was high (38% [35-41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27-32]. The hazard of death was comparatively lower for patients in the WHO European region. INTERPRETATION: Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Prognostic indicators and outcomes of hospitalised COVID-19 patients with neurological disease: An individual patient data meta-analysis

    Get PDF
    Background Neurological COVID-19 disease has been reported widely, but published studies often lack information on neurological outcomes and prognostic risk factors. We aimed to describe the spectrum of neurological disease in hospitalised COVID-19 patients; characterise clinical outcomes; and investigate factors associated with a poor outcome. Methods We conducted an individual patient data (IPD) meta-analysis of hospitalised patients with neurological COVID-19 disease, using standard case definitions. We invited authors of studies from the first pandemic wave, plus clinicians in the Global COVID-Neuro Network with unpublished data, to contribute. We analysed features associated with poor outcome (moderate to severe disability or death, 3 to 6 on the modified Rankin Scale) using multivariable models. Results We included 83 studies (31 unpublished) providing IPD for 1979 patients with COVID-19 and acute new-onset neurological disease. Encephalopathy (978 [49%] patients) and cerebrovascular events (506 [26%]) were the most common diagnoses. Respiratory and systemic symptoms preceded neurological features in 93% of patients; one third developed neurological disease after hospital admission. A poor outcome was more common in patients with cerebrovascular events (76% [95% CI 67–82]), than encephalopathy (54% [42–65]). Intensive care use was high (38% [35–41]) overall, and also greater in the cerebrovascular patients. In the cerebrovascular, but not encephalopathic patients, risk factors for poor outcome included breathlessness on admission and elevated D-dimer. Overall, 30-day mortality was 30% [27–32]. The hazard of death was comparatively lower for patients in the WHO European region. Interpretation Neurological COVID-19 disease poses a considerable burden in terms of disease outcomes and use of hospital resources from prolonged intensive care and inpatient admission; preliminary data suggest these may differ according to WHO regions and country income levels. The different risk factors for encephalopathy and stroke suggest different disease mechanisms which may be amenable to intervention, especially in those who develop neurological symptoms after hospital admission

    Prise en charge des neuropathies périphériques en médecine interne générale [Management of peripheral neuropathy in general internal medicine]

    No full text
    Peripheral neuropathies are frequent in clinical practice and portend severe functional limitations or neuropathic pain. History taking and clinical examination represent key features to trigger investigations and uncover the underlying affection. For general internal medicine practitioners, initial investigation should include search for alcohol consumption, diabetes mellitus, vitamin B12 deficiency and monoclonal gammapathy. Nerve conduction studies should be limited to patients with atypical presentations and/or without a defined etiology. After treatment of specific etiologies, supportive care includes management of neuropathic pain and physical rehabilitation

    Neuropathies aiguës sévères induites par l’infection à SARS-CoV-2 [Acute severe neuropathies in the context of SARS-CoV-2 infection]

    No full text
    Various neuromuscular complications have been described in SARS-CoV-2 infection, especially Guillain-Barré syndrome (GBS) and Critical Illness neuromyopathy (CI-NM). Two representative cases are discussed below. It appears that GBS shares most of the characteristics of classical post-infectious GBS, but SARS-CoV-2 may contribute to the increased incidence of CI-NM. Other rare complications have been described, including Tapia Syndrome and Kawasaki-like multiple system inflammatory syndrome. The question of vaccination and the risk of immune-mediated neuropathies remains open, but the lack of reported cases is reassuring as these complications usually occur within 6 weeks after vaccination
    corecore