4,596 research outputs found
Free-carrier screening of polarization fields in wurtzite GaN/InGaN laser structures
The free-carrier screening of macroscopic polarization fields in wurtzite
GaN/InGaN quantum wells lasers is investigated via a self-consistent
tight-binding approach. We show that the high carrier concentrations found
experimentally in nitride laser structures effectively screen the built-in
spontaneous and piezoelectric polarization fields, thus inducing a
``field-free'' band profile. Our results explain some heretofore puzzling
experimental data on nitride lasers, such as the unusually high lasing
excitation thresholds and emission blue-shifts for increasing excitation
levels.Comment: RevTeX 4 pages, 4 figure
Effects of macroscopic polarization in III-V nitride multi-quantum-wells
Huge built-in electric fields have been predicted to exist in wurtzite III-V
nitrides thin films and multilayers. Such fields originate from heterointerface
discontinuities of the macroscopic bulk polarization of the nitrides. Here we
discuss the background theory, the role of spontaneous polarization in this
context, and the practical implications of built-in polarization fields in
nitride nanostructures. To support our arguments, we present detailed
self-consistent tight-binding simulations of typical nitride QW structures in
which polarization effects are dominant.Comment: 11 pages, 9 figures, uses revtex/epsf. submitted to PR
Non-linear macroscopic polarization in III-V nitride alloys
We study the dependence of macroscopic polarization on composition and strain
in wurtzite III-V nitride ternary alloys using ab initio density-functional
techniques. The spontaneous polarization is characterized by a large bowing,
strongly dependent on the alloy microscopic structure. The bowing is due to the
different response of the bulk binaries to hydrostatic pressure, and to
internal strain effects (bond alternation). Disorder effects are instead minor.
Deviations from parabolicity (simple bowing) are of order 10 % in the most
extreme case of AlInN alloy, much less at all other compositions. Piezoelectric
polarization is also strongly non-linear. At variance with the spontaneous
component, this behavior is independent of microscopic alloy structure or
disorder effects, and due entirely to the non-linear strain dependence of the
bulk piezoelectric response. It is thus possible to predict the piezoelectric
polarization for any alloy composition using the piezoelectricity of the parent
binaries.Comment: RevTex 7 pages, 7 postscript figures embedde
Internal alignment and position resolution of the silicon tracker of DAMPE determined with orbit data
The DArk Matter Particle Explorer (DAMPE) is a space-borne particle detector
designed to probe electrons and gamma-rays in the few GeV to 10 TeV energy
range, as well as cosmic-ray proton and nuclei components between 10 GeV and
100 TeV. The silicon-tungsten tracker-converter is a crucial component of
DAMPE. It allows the direction of incoming photons converting into
electron-positron pairs to be estimated, and the trajectory and charge (Z) of
cosmic-ray particles to be identified. It consists of 768 silicon micro-strip
sensors assembled in 6 double layers with a total active area of 6.6 m.
Silicon planes are interleaved with three layers of tungsten plates, resulting
in about one radiation length of material in the tracker. Internal alignment
parameters of the tracker have been determined on orbit, with non-showering
protons and helium nuclei. We describe the alignment procedure and present the
position resolution and alignment stability measurements
Prospect for Charge Current Neutrino Interactions Measurements at the CERN-PS
Tensions in several phenomenological models grew with experimental results on
neutrino/antineutrino oscillations at Short-Baseline (SBL) and with the recent,
carefully recomputed, antineutrino fluxes from nuclear reactors. At a
refurbished SBL CERN-PS facility an experiment aimed to address the open issues
has been proposed [1], based on the technology of imaging in ultra-pure
cryogenic Liquid Argon (LAr). Motivated by this scenario a detailed study of
the physics case was performed. We tackled specific physics models and we
optimized the neutrino beam through a full simulation. Experimental aspects not
fully covered by the LAr detection, i.e. the measurements of the lepton charge
on event-by-event basis and their energy over a wide range, were also
investigated. Indeed the muon leptons from Charged Current (CC) (anti-)neutrino
interactions play an important role in disentangling different phenomenological
scenarios provided their charge state is determined. Also, the study of muon
appearance/disappearance can benefit of the large statistics of CC muon events
from the primary neutrino beam. Results of our study are reported in detail in
this proposal. We aim to design, construct and install two Spectrometers at
"NEAR" and "FAR" sites of the SBL CERN-PS, compatible with the already proposed
LAr detectors. Profiting of the large mass of the two Spectrometers their
stand-alone performances have also been exploited.Comment: 70 pages, 38 figures. Proposal submitted to SPS-C, CER
Study of the diffuse gamma-ray emission from the Galactic plane with ARGO-YBJ
The events recorded by ARGO-YBJ in more than five years of data collection
have been analyzed to determine the diffuse gamma-ray emission in the Galactic
plane at Galactic longitudes 25{\deg} < l < 100{\deg} and Galactic latitudes .
The energy range covered by this analysis, from ~350 GeV to ~2 TeV, allows the
connection of the region explored by Fermi with the multi-TeV measurements
carried out by Milagro. Our analysis has been focused on two selected regions
of the Galactic plane, i.e., 40{\deg} < l < 100{\deg} and 65{\deg} < l <
85{\deg} (the Cygnus region), where Milagro observed an excess with respect to
the predictions of current models. Great care has been taken in order to mask
the most intense gamma-ray sources, including the TeV counterpart of the Cygnus
cocoon recently identified by ARGO-YBJ, and to remove residual contributions.
The ARGO-YBJ results do not show any excess at sub-TeV energies corresponding
to the excess found by Milagro, and are consistent with the predictions of the
Fermi model for the diffuse Galactic emission. From the measured energy
distribution we derive spectral indices and the differential flux at 1 TeV of
the diffuse gamma-ray emission in the sky regions investigated.Comment: 11 pages, 6 figures, published in AP
Search for Gamma Ray Bursts with the Argo-YBJ Detector in Scaler Mode
We report on the search for Gamma Ray Bursts (GRBs) in the energy range 1-100
GeV in coincidence with the prompt emission detected by satellites using the
Astrophysical Radiation with Ground-based Observatory at YangBaJing (ARGO-YBJ)
air shower detector. Thanks to its mountain location (Yangbajing, Tibet, P.R.
China, 4300 m a.s.l.), active surface (about 6700 m**2 of Resistive Plate
Chambers), and large field of view (about 2 sr, limited only by the atmospheric
absorption), the ARGO-YBJ air shower detector is particularly suitable for the
detection of unpredictable and short duration events such as GRBs. The search
is carried out using the "single particle technique", i.e. counting all the
particles hitting the detector without measurement of the energy and arrival
direction of the primary gamma rays.
Between 2004 December 17 and 2009 April 7, 81 GRBs detected by satellites
occurred within the field of view of ARGO-YBJ (zenith angle < 45 deg). It was
possible to examine 62 of these for >1 GeV counterpart in the ARGO-YBJ data
finding no statistically significant emission. With a lack of detected spectra
in this energy range fluence upper limits are profitable, especially when the
redshift is known and the correction for the extragalactic absorption can be
considered. The obtained fluence upper limits reach values as low as 10**{-5}
erg cm**{-2} in the 1-100 GeV energy region.
Besides this individual search for a higher energy counterpart, a statistical
study of the stack of all the GRBs both in time and in phase was made, looking
for a common feature in the GRB high energy emission. No significant signal has
been detected.Comment: accepted for publication in Ap
New MACRO results on atmospheric neutrino oscillations
The final results of the MACRO experiment on atmospheric neutrino
oscillations are presented and discussed. The data concern different event
topologies with average neutrino energies of ~3 and ~50 GeV. Multiple Coulomb
Scattering of the high energy muons in absorbers was used to estimate the
neutrino energy of each event. The angular distributions, the L/E_nu
distribution, the particle ratios and the absolute fluxes all favour nu_mu -->
nu_tau oscillations with maximal mixing and Delta m^2 =0.0023 eV^2. A
discussion is made on the Monte Carlos used for the atmospheric neutrino flux.
Some results on neutrino astrophysics are also briefly discussed.Comment: Invited Paper at the NANP03 Int. Conf., Dubna, 200
Observation of TeV gamma-rays from the unidentified source HESS J1841-055 with the ARGO-YBJ experiment
We report the observation of a very high energy \gamma-ray source, whose
position is coincident with HESS J1841-055. This source has been observed for
4.5 years by the ARGO-YBJ experiment from November 2007 to July 2012. Its
emission is detected with a statistical significance of 5.3 standard
deviations. Parameterizing the source shape with a two-dimensional Gaussian
function we estimate an extension \sigma=(0.40(+0.32,-0.22}) degree, consistent
with the HESS measurement. The observed energy spectrum is dN/dE =(9.0-+1.6) x
10^{-13}(E/5 TeV)^{-2.32-+0.23} photons cm^{-2} s^{-1} TeV^{-1}, in the energy
range 0.9-50 TeV. The integral \gamma-ray flux above 1 TeV is 1.3-+0.4 Crab
units, which is 3.2-+1.0 times the flux derived by HESS. The differences in the
flux determination between HESS and ARGO-YBJ, and possible counterparts at
other wavelengths are discussed.Comment: 17 pages, 4 figures, have been accepted for publication in Ap
Mean Interplanetary Magnetic Field Measurement Using the ARGO-YBJ Experiment
The sun blocks cosmic ray particles from outside the solar system, forming a
detectable shadow in the sky map of cosmic rays detected by the ARGO-YBJ
experiment in Tibet. Because the cosmic ray particles are positive charged, the
magnetic field between the sun and the earth deflects them from straight
trajectories and results in a shift of the shadow from the true location of the
sun. Here we show that the shift measures the intensity of the field which is
transported by the solar wind from the sun to the earth.Comment: 6 papges,3 figure
- …
