8,390 research outputs found

    Selected fretting-wear-resistant coatings for titanium - 6-percent-aluminum - 4-percent-vanadium alloy

    Get PDF
    A titanium - 6-percent-aluminum - 4-percent-vanadium alloy (Ti-6Al-4V) was subjected to fretting-wear exposures against uncoated Ti-6Al-4V as a baseline and against various coatings and surface treatments applied to Ti-6Al-4V. The coatings evaluated included plasma-sprayed tungsten carbide with 12 percent cobalt, aluminum oxide with 13 percent titanium oxide, chromium oxide, and aluminum bronze with 10 percent aromatic polyester; polymer-bonded polyimide, polyimide with graphite fluoride, polyimide with molybdenum disulfide (MoS2), and methyl phenyl silicone bonded MoS2, preoxidation surface treatment, a nitride surface treatment, and a sputtered MoS2 coating. Results of wear measurements on both the coated and uncoated surfaces after 300,000 fretting cycles indicated that the polyimide coating was the most wear resistant and caused the least wear to the uncoated mating surface

    Fretting of titanium at temperatures to 650 C in air

    Get PDF
    Fretting wear experiments were conducted on high-purity titanium at temperatures up to 650 C. Results indicate that up to about 500 C, the fretting wear increases with temperature. A further increase in the temperature up to 650 C results in decreasing fretting wear. This change in trend of fretting wear with temperature is shown to be associated with a change in oxidation rate. Additional experiments at 650 C showed a transmission from a low rate of fretting wear to a higher rate occurred after exposure to a number of fretting cycles; the number of cycles required to cause this transition was dependent on the normal load. Scanning electron microscopy studies revealed that this transition was marked by cracking and disruption of the surface oxide film. A model was proposed that coupled the oxidation rate kinetics of titanium at 650 C with the occurrence of wear at the surface of the oxide film

    Fretting wear of iron, nickel, and titanium under varied environmental conditions

    Get PDF
    Fretting wear experiments were conducted on high purity iron, nickel and titanium in air under conditions of varied humidity and temperature, and in nitrogen. For iron and titanium, maximum fretting occurred at 10 and 30 percent relative humidity respectively. Nickel showed a minimum in fretting wear at about 10 percent relative humidity. With increasing temperature, all three metals initially showed reduced fretting wear, with increasing wear observed as temperatures increased beyond 200-300 C. For titanium, dramatically reduced fretting wear was observed at temperatures above 500 C, relatable to a change in oxidation kinetics. All three metals showed much less fretting wear in N2 with the presence of moisture in N2 having a proportionally stronger effect than in air

    The role of oxidation in the fretting wear process

    Get PDF
    Fretting experiments were conducted on titanium, a series of Ni-Cr-Al alloys and on some high temperature turbine alloys at room temperature and at elevated temperatures in air and in various inert environments. It was found that, depending on temperature and environment, the fretting behavior of the materials examined could be classified according to four general types of behavior. Briefly, these types of behavior were: (1) the complete absence of oxidation, as in inert environments, generally leading to low rates of fretting wear but high fretting friction; (2) gradual attrition of surface oxide with each fretting stroke, found in these experiments to operate in concert with other dominating mechanisms; (3) rapid oxidation at surface fatigue damage sites, resulting in undermining and rapid disintegration of the load bearing surface; and (4) the formation of coherent, protective oxide film, resulting in low rates of fretting wear. An analytical model predicting conditions favorable to the fourth type of behavior was outlined

    Some metal-graphite and metal-ceramic composites for use as high energy brake lining materials

    Get PDF
    Materials were studied as candidates for development as potential new aircraft brake lining materials. These families were (1) copper-graphite composites; (2) nickel-graphite composites; (3) copper - rare-earth-oxide (gadolinium oxide (Gd2O3) or lanthanum oxide (La2O3)) composites and copper - rare-earth-oxide (La2O3) - rare-earth-fluoride (lanthanum fluoride (LaF3)) composites; (4) nickel - rare-earth-oxide composites and nickel - rare-earth-oxide - rare-earth-fluoride composites. For comparison purposes, a currently used metal-ceramic composite was also studied. Results showed that the nickel-Gd2O3 and nickel-La2O3-LaF3 composites were comparable or superior in friction and wear performance to the currently used composite and therefore deserve to be considered for further development

    Micromechanisms of thermomechanical fatigue: A comparison with isothermal fatigue

    Get PDF
    Thermomechanical Fatigue (TMF) experiments were conducted on Mar-M 200, B-1900, and PWA-1480 (single crystals) over temperature ranges representative of gas turbine airfoil environments. The results were examined from both a phenomenological basis and a micromechanical basis. Depending on constituents present in the superalloy system, certain micromechanisms dominated the crack initiation process and significantly influenced the TMF lives as well as sensitivity of the material to the type TMF cycle imposed. For instance, high temperature cracking around grain boundary carbides in Mar-M 200 resulted in short in-phase TMF lives compared to either out-of-phase or isothermal lives. In single crystal PWA-1480, the type of coating applied was seen to be the controlling factor in determining sensitivity to the type of TMF cycle imposed. Micromechanisms of deformation were observed over the temperature range of interest to the TMF cycles, and provided some insight as to the differences between TMF damage mechanisms and isothermal damage mechanisms. Finally, the applicability of various life prediction models to TMF results was reviewed. Current life prediction models based on isothermal data must be modified before being generally applied to TMF

    Method of fabricating an abradable gas path seal

    Get PDF
    The thermal shock resistance of a ceramic layer is improved. The invention is particularly directed to an improved abradable lining that is deposited on shroud forming a gas path in turbomachinery. Improved thermal shock resistance of a shroud is effected through the deliberate introduction of benign cracks. These are microcracks which will not propagate appreciably upon exposure to the thermal shock environment in which a turbine seal must function. Laser surface fusion treatment is used to introduce these microcracks. The ceramic surface is laser scanned to form a continuous dense layer. As this layer cools and solidifies, shrinkage results in the formation of a very fine crack network. The presence of this deliberately introduced fine crack network precludes the formation of a catastrophic crack during thermal shock exposure

    Fretting in aircraft turbine engines

    Get PDF
    The problem of fretting in aircraft turbine engines is discussed. Critical fretting can occur on fan, compressor, and turbine blade mountings, as well as on splines, rolling element bearing races, and secondary sealing elements of face type seals. Structural fatigue failures have been shown to occur at fretted areas on component parts. Methods used by designers to reduce the effects of fretting are given

    Composite seal for turbomachinery

    Get PDF
    A gas path seal suitable for use with a turbine engine or compressor is provided. A shroud wearable or abradable by the abrasion of the rotor blades of the turbine or compressor protects the rotor blades. A compliant backing surrounds the shroud. The backing may be made of corrugated sheets or the like with adjacent layers having off-set corrugations, with axes of the folds parallel to the rotor axis. The sheets may be bonded together at points of contact by brazing, welding or the like. In another embodiment a compliant material is covered with a thin ductile layer. A mounting fixture surrounds the backing
    corecore