294 research outputs found
Network Density of States
Spectral analysis connects graph structure to the eigenvalues and
eigenvectors of associated matrices. Much of spectral graph theory descends
directly from spectral geometry, the study of differentiable manifolds through
the spectra of associated differential operators. But the translation from
spectral geometry to spectral graph theory has largely focused on results
involving only a few extreme eigenvalues and their associated eigenvalues.
Unlike in geometry, the study of graphs through the overall distribution of
eigenvalues - the spectral density - is largely limited to simple random graph
models. The interior of the spectrum of real-world graphs remains largely
unexplored, difficult to compute and to interpret.
In this paper, we delve into the heart of spectral densities of real-world
graphs. We borrow tools developed in condensed matter physics, and add novel
adaptations to handle the spectral signatures of common graph motifs. The
resulting methods are highly efficient, as we illustrate by computing spectral
densities for graphs with over a billion edges on a single compute node. Beyond
providing visually compelling fingerprints of graphs, we show how the
estimation of spectral densities facilitates the computation of many common
centrality measures, and use spectral densities to estimate meaningful
information about graph structure that cannot be inferred from the extremal
eigenpairs alone.Comment: 10 pages, 7 figure
An ultrahigh-vacuum cryostat for simultaneous scanning tunneling microscopy and magneto-transport measurements down to 400mK
We present the design and calibration measurements of a scanning tunneling
microscope setup in a 3He ultrahigh-vacuum cryostat operating at 400 mK with a
hold time of 10 days. With 2.70 m in height and 4.70 m free space needed for
assembly, the cryostat fits in a one-story lab building. The microscope
features optical access, an xy table, in situ tip and sample exchange, and
enough contacts to facilitate atomic force microscopy in tuning fork operation
and simultaneous magneto-transport measurements on the sample. Hence, it
enables scanning tunneling spectroscopy on microstructured samples which are
tuned into preselected transport regimes. A superconducting magnet provides a
perpendicular field of up to 14 T. The vertical noise of the scanning tunneling
microscope amounts to 1 pmrms within a 700 Hz bandwidth. Tunneling spectroscopy
using one superconducting electrode revealed an energy resolution of 120 mueV.
Data on tip-sample Josephson contacts yield an even smaller feature size of 60
mueV, implying that the system operates close to the physical noise limit.Comment: 12 pages, 11 figure
Symmetry of bound and antibound states in the semiclassical limit
We consider one dimensional scattering and show how the presence of a mild
positive barrier separating the interaction region from infinity implies that
the bound and antibound states are symmetric modulo exponentially small errors
in 1/h. This simple result was inspired by a numerical experiment and we
describe the numerical scheme for an efficient computation of resonances in one
dimension
Centrality dependence of charged antiparticle to particle ratios near mid-rapidity in d+Au collisions at sqrt(s_NN)=200 GeV
The ratios of the yields of charged antiparticles to particles have been
obtained for pions, kaons, and protons near mid-rapidity for d+Au collisions at
sqrt(s_NN) = 200 GeV as a function of centrality. The reported values represent
the ratio of the yields averaged over the rapidity range of 0.1<y_pi<1.3 and
0<y_(K,p)<0.8, where positive rapidity is in the deuteron direction, and for
transverse momenta 0.1<p_(T)^(pi,K)<1.0 GeV/c and 0.3<p_(T)^(p)<1.0 GeV/c.
Within the uncertainties, a lack of centrality dependence is observed in all
three ratios. The data are compared to results from other systems and model
calculations.Comment: 6 pages, 4 figures, submitted to PR
System Size, Energy and Centrality Dependence of Pseudorapidity Distributions of Charged Particles in Relativistic Heavy Ion Collisions
We present the first measurements of the pseudorapidity distribution of
primary charged particles in Cu+Cu collisions as a function of collision
centrality and energy, \sqrtsnn = 22.4, 62.4 and 200 GeV, over a wide range of
pseudorapidity, using the PHOBOS detector. Making a global comparison of Cu+Cu
and Au+Au results, we find that the total number of produced charged particles
and the rough shape (height and width) of the pseudorapidity distributions are
determined by the number of nucleon participants. More detailed studies reveal
that a more precise matching of the shape of the Cu+Cu and Au+Au pseudorapidity
distributions over the full range of pseudorapidity occurs for the same
Npart/2A value rather than the same Npart value. In other words, it is the
collision geometry rather than just the number of nucleon participants that
drives the detailed shape of the pseudorapidity distribution and its centrality
dependence at RHIC energies.Comment: Submitted to Physical Review Letter
System Size, Energy, Pseudorapidity, and Centrality Dependence of Elliptic Flow
This paper presents measurements of the elliptic flow of charged particles as
a function of pseudorapidity and centrality from Cu-Cu collisions at 62.4 and
200 GeV using the PHOBOS detector at the Relativistic Heavy Ion Collider
(RHIC). The elliptic flow in Cu-Cu collisions is found to be significant even
for the most central events. For comparison with the Au-Au results, it is found
that the detailed way in which the collision geometry (eccentricity) is
estimated is of critical importance when scaling out system-size effects. A new
form of eccentricity, called the participant eccentricity, is introduced which
yields a scaled elliptic flow in the Cu-Cu system that has the same relative
magnitude and qualitative features as that in the Au-Au system
Latest Results from PHOBOS
This manuscript contains a summary of the latest physics results from PHOBOS,
as reported at Quark Matter 2006. Highlights include the first measurement from
PHOBOS of dynamical elliptic flow fluctuations as well as an explanation of
their possible origin, two-particle correlations, identified particle ratios,
identified particle spectra and the latest results in global charged particle
production.Comment: 9 pages, 7 figures, PHOBOS plenary proceedings for Quark Matter 200
- …
