27,695 research outputs found
Flow transitions in two-dimensional foams
For sufficiently slow rates of strain, flowing foam can exhibit inhomogeneous
flows. The nature of these flows is an area of active study in both
two-dimensional model foams and three dimensional foam. Recent work in
three-dimensional foam has identified three distinct regimes of flow [S. Rodts,
J. C. Baudez, and P. Coussot, Europhys. Lett. {\bf 69}, 636 (2005)]. Two of
these regimes are identified with continuum behavior (full flow and
shear-banding), and the third regime is identified as a discrete regime
exhibiting extreme localization. In this paper, the discrete regime is studied
in more detail using a model two dimensional foam: a bubble raft. We
characterize the behavior of the bubble raft subjected to a constant rate of
strain as a function of time, system size, and applied rate of strain. We
observe localized flow that is consistent with the coexistence of a power-law
fluid with rigid body rotation. As a function of applied rate of strain, there
is a transition from a continuum description of the flow to discrete flow when
the thickness of the flow region is approximately 10 bubbles. This occurs at an
applied rotation rate of approximately
Microwave dosimeter - A concept
Dosimeter determines time-integrated radiation dosage to which an individual is exposed. Integration is measured chemically in proportion to radiation detected. Wearer receives an exposure measurement representing an average of the dose over the entire body
Exact solution of Riemann--Hilbert problem for a correlation function of the XY spin chain
A correlation function of the XY spin chain is studied at zero temperature.
This is called the Emptiness Formation Probability (EFP) and is expressed by
the Fredholm determinant in the thermodynamic limit. We formulate the
associated Riemann--Hilbert problem and solve it exactly. The EFP is shown to
decay in Gaussian.Comment: 7 pages, to be published in J. Phys. Soc. Jp
Fibrational induction rules for initial algebras
This paper provides an induction rule that can be used to prove properties of data structures whose types are inductive, i.e., are carriers of initial algebras of functors. Our results are semantic in nature and are inspired by Hermida and Jacobs’ elegant algebraic formulation of induction for polynomial data types. Our contribution is to derive, under slightly different assumptions, an induction rule that is generic over all inductive types, polynomial or not. Our induction rule is generic over the kinds of properties to be proved as well: like Hermida and Jacobs, we work in a general fibrational setting and so can accommodate very general notions of properties on inductive types rather than just those of particular syntactic forms. We establish the correctness of our generic induction rule by reducing induction to iteration. We show how our rule can be instantiated to give induction rules for the data types of rose trees, finite hereditary sets, and hyperfunctions. The former lies outside the scope of Hermida and Jacobs’ work because it is not polynomial; as far as we are aware, no induction rules have been known to exist for the latter two in a general fibrational framework. Our instantiation for hyperfunctions underscores the value of working in the general fibrational setting since this data type cannot be interpreted as a set
Elastic Lennard-Jones Polymers Meet Clusters -- Differences and Similarities
We investigate solid-solid and solid-liquid transitions of elastic flexible
off-lattice polymers with Lennard-Jones monomer-monomer interaction and
anharmonic springs by means of sophisticated variants of multicanonical Monte
Carlo methods. We find that the low-temperature behavior depends strongly and
non-monotonically on the system size and exhibits broad similarities to unbound
atomic clusters. Particular emphasis is dedicated to the classification of
icosahedral and non-icosahedral low-energy polymer morphologies.Comment: 9 pages, 17 figure
Auroral thermosphere temperatures from observations of 6300 A emissions
Doppler temperatures determined from observations of the atomic oxygen OI 6300 A line during March 1984 at the University of Alaska/Fairbanks are presented. Temperatures are obtained from Fabry-Perot Interferometer pressure scans using a Fourier transform smoothing and fitting technique; this technique is presented in detail. The temperatures and the spread in the temperatures are consistent from day to day. On the clear nights of March 10 to 13, the temperatures were 800, 750, 750 and 800 K, respectively, with a spread of + or - 100 K. These temperatures are compared to the MSIS (84) model atmosphere for similar geomagnetic conditions and found to be in general agreement; they are also consistent with results obtained by other investigators
Shell Model of Two-dimensional Turbulence in Polymer Solutions
We address the effect of polymer additives on two dimensional turbulence, an
issue that was studied recently in experiments and direct numerical
simulations. We show that the same simple shell model that reproduced drag
reduction in three-dimensional turbulence reproduces all the reported effects
in the two-dimensional case. The simplicity of the model offers a
straightforward understanding of the all the major effects under consideration
- …
