2,231 research outputs found

    Mirror effect induced by the dilaton field on the Hawking radiation

    Full text link
    We discuss the string creation in the near-extremal NS1 black string solution. The string creation is described by an effective field equation derived from a fundamental string action coupled to the dilaton field in a conformally invariant manner. In the non-critical string model the dilaton field causes a timelike mirror surface outside the horizon when the size of the black string is comparable to the Planck scale. Since the fundamental strings are reflected by the mirror surface, the negative energy flux does not propagate across the surface. This means that the evaporation stops just before the naked singularity of the extremal black string appears even though the surface gravity is non-zero in the extremal limit.Comment: 15 page

    Curved BPS domain walls and RG flow in five dimensions

    Get PDF
    We determine, in the context of five-dimensional N=2{\cal N}=2 gauged supergravity with vector and hypermultiplets, the conditions under which curved (non Ricci flat) supersymmetric domain wall solutions may exist. These curved BPS domain wall solutions may, in general, be supported by non-constant vector and hyper scalar fields. We establish our results by a careful analysis of the BPS equations as well as of the associated integrability conditions and the equations of motion. We construct an example of a curved BPS solution in a gauged supergravity model with one hypermultiplet. We also discuss the dual description of curved BPS domain walls in terms of RG flows.Comment: 18 pages, LaTeX, 5 figures; added reference

    Thermodynamic Curvature of the BTZ Black Hole

    Get PDF
    Some thermodynamic properties of the Ba\~nados-Teitelboim-Zanelli (BTZ) black hole are studied to get the effective dimension of its corresponding statistical model. For this purpose, we make use of the geometrical approach to the thermodynamics: Considering the black hole as a thermodynamic system with two thermodynamic variables (the mass MM and the angular momemtum JJ), we obtain two-dimensional Riemannian thermodynamic geometry described by positive definite Ruppeiner metric. From the thermodynamic curvature we find that the extremal limit is the critical point. The effective spatial dimension of the statistical system corresponding to the near-extremal BTZ black holes is one. Far from the extremal point, the effective dimension becomes less than one, which leads to one possible speculation on the underlying structure for the corresponding statistical model.Comment: 19 pages, LaTeX with revtex macro, 4 figures in eps file

    Penrose Limits and RG Flows

    Full text link
    The Penrose-Gueven limit simplifies a given supergravity solution into a pp-wave background. Aiming at clarifying its relation to renormalization group flow we study the Penrose-Guven limit of supergravity backgrounds that are dual to non-conformal gauge theories. The resulting backgrounds fall in a class simple enough that the quantum particle is exactly solvable. We propose a map between the effective time-dependent quantum mechanical problem and the RG flow in the gauge theory. As a testing ground we consider explicitly two Penrose limits of the infrared fixed point of the Pilch-Warner solution. We analyze the corresponding gauge theory picture and write down the operators which are the duals of the low lying string states. We also address RG flows of a different nature by considering the Penrose-Gueven limit of a stack of N D_p branes. We note that in the far IR (for p<3)the limit generically has negative mass-squared. This phenomenon signals, in the world sheet picture, the necessity to transform to another description. In this regard, we consider explicitly the cases of M2 from D2 and F1 from D1 .Comment: 35 pp, 6 figure

    Supercharges, Killing Spinors and Intersecting Gauge Five-branes

    Get PDF
    We obtain new solutions where a string and a pp-wave lie in the common worldvolume directions of the non-standard intersection of two gauge 5-branes in the heterotic string. The two 5-branes are supported by independent SU(2) Yang-Mills instantons in their respective (non-overlapping) transverse spaces. We present a detailed study of the unbroken supersymmetry, focusing especially on a comparison between a direct construction of Killing spinors and a counting of zero eigenvalues in the annticommutator of supercharges. The results are in agreement with some previous arguments, to the effect that additional zero eigenvalues resulting from a ``fine-tuning'' between positive-energy and negative-energy contributions from different components in an intersection are spurious, and should not be taken as an indication of supersymmetry enhancements. These observations have a general applicability that goes beyond the specific example we study in this paper.Comment: Latex, 23 pages; minor revisions, and references adde

    Five-brane Instantons vs Flux-induced Gauging of Isometries

    Get PDF
    In five-dimensional heterotic M-theory there is necessarily nonzero background flux, which leads to gauging of an isometry of the universal hypermultiplet moduli space. This isometry, however, is poised to be broken by M5-brane instanton effects. We show that, similarly to string theory, the background flux allows only brane instantons that preserve the above isometry. The zero-mode counting for the M5 instantons is related to the number of solutions of the Dirac equation on their worldvolume. We investigate that equation in the presence of generic background flux and also, in a particular case, with nonzero worldvolume flux.Comment: 27 pages; reference adde

    The Conformal Penrose Limit and the Resolution of the pp-curvature Singularities

    Full text link
    We consider the exact solutions of the supergravity theories in various dimensions in which the space-time has the form M_{d} x S^{D-d} where M_{d} is an Einstein space admitting a conformal Killing vector and S^{D-d} is a sphere of an appropriate dimension. We show that, if the cosmological constant of M_{d} is negative and the conformal Killing vector is space-like, then such solutions will have a conformal Penrose limit: M^{(0)}_{d} x S^{D-d} where M^{(0)}_{d} is a generalized d-dimensional AdS plane wave. We study the properties of the limiting solutions and find that M^{(0)}_{d} has 1/4 supersymmetry as well as a Virasoro symmetry. We also describe how the pp-curvature singularity of M^{(0)}_{d} is resolved in the particular case of the D6-branes of D=10 type IIA supergravity theory. This distinguished case provides an interesting generalization of the plane waves in D=11 supergravity theory and suggests a duality between the SU(2) gauged d=8 supergravity of Salam and Sezgin on M^{(0)}_{8} and the d=7 ungauged supergravity theory on its pp-wave boundary.Comment: 20 pages, LaTeX; typos corrected, journal versio

    AdS Duals of Matrix Strings

    Get PDF
    We review recent work on the holographic duals of type II and heterotic matrix string theories described by warped AdS_3 supergravities. In particular, we compute the spectra of Kaluza-Klein primaries for type I, II supergravities on warped AdS_3xS^7 and match them with the primary operators in the dual two-dimensional gauge theories. The presence of non-trivial warp factors and dilaton profiles requires a modification of the familiar dictionary between masses and ``scaling'' dimensions of fields and operators. We present these modifications for the general case of domain wall/QFT correspondences between supergravities on warped AdS_{d+1}xS^q geometries and super Yang-Mills theories with 16 supercharges.Comment: 7 pages, Proceedings of the RTN workshop ``The quantum structure of spacetime and the geometric nature of fundamental interactions'', Leuven, September 200

    Background geometry of DLCQ M theory on a p-torus and holography

    Get PDF
    Via supergravity, we argue that the infinite Lorentz boost along the M theory circle a la Seiberg toward the DLCQ M theory compactified on a p-torus (p<5) implies the holographic description of the microscopic theory. This argument lets us identify the background geometries of DLCQ MM theory on a p-torus; for p=0 (p=1), the background geometry turns out to be eleven-dimensional (ten-dimensional) flat Minkowski space-time, respectively. Holography for these cases results from the localization of the light-cone momentum. For p = 2,3,4, the background geometries are the tensor products of an Anti de Sitter space and a sphere, which, according to the AdS/CFT correspondence, have the holographic conformal field theory description. These holographic descriptions are compatible to the microscopic theory of Seiberg based on M~\tilde{M} theory on a spatial circle with the rescaled Planck length, giving an understanding of the validity of the AdS/CFT correspondence.Comment: 16 pages, Revtex, no figure

    Scalar fields, bent branes, and RG flow

    Get PDF
    This work deals with braneworld scenarios driven by real scalar fields with standard dynamics. We show how the first-order formalism which exists in the case of four dimensional Minkowski space-time can be extended to de Sitter or anti-de Sitter geometry in the presence of several real scalar fields. We illustrate the results with some examples, and we take advantage of our findings to investigate renormalization group flow. We have found symmetric brane solutions with four-dimensional anti-de Sitter geometry whose holographically dual field theory exhibits a weakly coupled regime at high energy.Comment: 22 pages, 7 figure
    corecore