1,062 research outputs found
An accuracy assessment of Magellan Very Long Baseline Interferometry (VLBI)
Very Long Baseline Interferometry (VLBI) measurements of the Magellan spacecraft's angular position and velocity were made during July through September, 1989, during the spacecraft's heliocentric flight to Venus. The purpose of this data acquisition and reduction was to verify this data type for operational use before Magellan is inserted into Venus orbit, in August, 1990. The accuracy of these measurements are shown to be within 20 nanoradians in angular position, and within 5 picoradians/sec in angular velocity. The media effects and their calibrations are quantified; the wet fluctuating troposphere is the dominant source of measurement error for angular velocity. The charged particle effect is completely calibrated with S- and X-Band dual-frequency calibrations. Increasing the accuracy of the Earth platform model parameters, by using VLBI-derived tracking station locations consistent with the planetary ephemeris frame, and by including high frequency Earth tidal terms in the Earth rotation model, add a few nanoradians improvement to the angular position measurements. Angular velocity measurements were insensitive to these Earth platform modelling improvements
Precise tracking of the Magellan and Pioneer Venusorbiters by same-beam interferometry. Part 1: Dataaccuracy analysis
Simultaneous tracking of two spacecraft in orbit about a distant planet by two widely separated Earth-based radio antennas provides more-accurate positioning information than can be obtained by tracking each spacecraft separately. A demonstration of this tracking technique, referred to as same-beam interferometry (SBI), is currently being done using the Magellan and Pioneer 12 orbiters at Venus. Signals from both spacecraft fall within the same beamwidth of the Deep Space Station antennas. The plane-of-sky position difference between spacecraft is precisely determined by doubly differenced phase measurements. This radio metric measurement naturally complements line-of-sight Doppler. Data was first collected from Magellan and Pioneer 12 on August 11-12, 1990, shortly after Magellan was inserted into Venus orbit. Data were subsequently acquired in February and April 1991, providing a total of 34 hours of same-beam radio metric observables. Same-beam radio metric residuals have been analyzed and compared with model measurement error predictions. The predicted error is dominated by solar plasma fluctuations. The rms of the residuals is less than predicted by about 25 percent for 5-min averages. The shape of the spectrum computed from residuals is consistent with that derived from a model of solar plasma fluctuations. This data type can greatly aid navigation of a second spacecraft when the first is well-known in its orbit
Algorithmic Bayesian Persuasion
Persuasion, defined as the act of exploiting an informational advantage in
order to effect the decisions of others, is ubiquitous. Indeed, persuasive
communication has been estimated to account for almost a third of all economic
activity in the US. This paper examines persuasion through a computational
lens, focusing on what is perhaps the most basic and fundamental model in this
space: the celebrated Bayesian persuasion model of Kamenica and Gentzkow. Here
there are two players, a sender and a receiver. The receiver must take one of a
number of actions with a-priori unknown payoff, and the sender has access to
additional information regarding the payoffs. The sender can commit to
revealing a noisy signal regarding the realization of the payoffs of various
actions, and would like to do so as to maximize her own payoff assuming a
perfectly rational receiver.
We examine the sender's optimization task in three of the most natural input
models for this problem, and essentially pin down its computational complexity
in each. When the payoff distributions of the different actions are i.i.d. and
given explicitly, we exhibit a polynomial-time (exact) algorithm, and a
"simple" -approximation algorithm. Our optimal scheme for the i.i.d.
setting involves an analogy to auction theory, and makes use of Border's
characterization of the space of reduced-forms for single-item auctions. When
action payoffs are independent but non-identical with marginal distributions
given explicitly, we show that it is #P-hard to compute the optimal expected
sender utility. Finally, we consider a general (possibly correlated) joint
distribution of action payoffs presented by a black box sampling oracle, and
exhibit a fully polynomial-time approximation scheme (FPTAS) with a bi-criteria
guarantee. We show that this result is the best possible in the black-box model
for information-theoretic reasons
Rationale for the Cytogenomics of Cardiovascular Malformations Consortium: A Phenotype Intensive Registry Based Approach
Cardiovascular malformations (CVMs) are the most common birth defect, occurring in 1%-5% of all live births. Although the genetic contribution to CVMs is well recognized, the genetic causes of human CVMs are identified infrequently. In addition, a failure of systematic deep phenotyping of CVMs, resulting from the complexity and heterogeneity of malformations, has obscured genotype-phenotype correlations and contributed to a lack of understanding of disease mechanisms. To address these knowledge gaps, we have developed the Cytogenomics of Cardiovascular Malformations (CCVM) Consortium, a multi-site alliance of geneticists and cardiologists, contributing to a database registry of submicroscopic genetic copy number variants (CNVs) based on clinical chromosome microarray testing in individuals with CVMs using detailed classification schemes. Cardiac classification is performed using a modification to the National Birth Defects Prevention Study approach, and non-cardiac diagnoses are captured through ICD-9 and ICD-10 codes. By combining a comprehensive approach to clinically relevant genetic analyses with precise phenotyping, the Consortium goal is to identify novel genomic regions that cause or increase susceptibility to CVMs and to correlate the findings with clinical phenotype. This registry will provide critical insights into genetic architecture, facilitate genotype-phenotype correlations, and provide a valuable resource for the medical community
Foodways in transition: food plants, diet and local perceptions of change in a Costa Rican Ngäbe community
Background
Indigenous populations are undergoing rapid ethnobiological, nutritional and socioeconomic transitions while being increasingly integrated into modernizing societies. To better understand the dynamics of these transitions, this article aims to characterize the cultural domain of food plants and analyze its relation with current day diets, and the local perceptions of changes given amongst the Ngäbe people of Southern Conte-Burica, Costa Rica, as production of food plants by its residents is hypothesized to be drastically in recession with an decreased local production in the area and new conservation and development paradigms being implemented.
Methods
Extensive freelisting, interviews and workshops were used to collect the data from 72 participants on their knowledge of food plants, their current dietary practices and their perceptions of change in local foodways, while cultural domain analysis, descriptive statistical analyses and development of fundamental explanatory themes were employed to analyze the data.
Results
Results show a food plants domain composed of 140 species, of which 85 % grow in the area, with a medium level of cultural consensus, and some age-based variation. Although many plants still grow in the area, in many key species a decrease on local production–even abandonment–was found, with much reduced cultivation areas. Yet, the domain appears to be largely theoretical, with little evidence of use; and the diet today is predominantly dependent on foods bought from the store (more than 50 % of basic ingredients), many of which were not salient or not even recognized as ‘food plants’ in freelists exercises. While changes in the importance of food plants were largely deemed a result of changes in cultural preferences for store bought processed food stuffs and changing values associated with farming and being food self-sufficient, Ngäbe were also aware of how changing household livelihood activities, and the subsequent loss of knowledge and use of food plants, were in fact being driven by changes in social and political policies, despite increases in forest cover and biodiversity.
Conclusions
Ngäbe foodways are changing in different and somewhat disconnected ways: knowledge of food plants is varied, reflecting most relevant changes in dietary practices such as lower cultivation areas and greater dependence on food from stores by all families. We attribute dietary shifts to socioeconomic and political changes in recent decades, in particular to a reduction of local production of food, new economic structures and agents related to the State and globalization
Search for the Proton Decay Mode proton to neutrino K+ in Soudan 2
We have searched for the proton decay mode proton to neutrino K+ using the
one-kiloton Soudan 2 high resolution calorimeter. Contained events obtained
from a 3.56 kiloton-year fiducial exposure through June 1997 are examined for
occurrence of a visible K+ track which decays at rest into mu+ nu or pi+ pi0.
We found one candidate event consistent with background, yielding a limit,
tau/B > 4.3 10^{31} years at 90% CL with no background subtraction.Comment: 13 pages, Latex, 3 tables and 3 figures, Accepted by Physics Letters
Circulating adrenomedullin estimates survival and reversibility of organ failure in sepsis: the prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock-1 (AdrenOSS-1) study
Background: Adrenomedullin (ADM) regulates vascular tone and endothelial permeability during sepsis. Levels of circulating biologically active ADM (bio-ADM) show an inverse relationship with blood pressure and a direct relationship with vasopressor requirement. In the present prospective observational multinational Adrenomedullin and Outcome in Sepsis and Septic Shock 1 (, AdrenOSS-1) study, we assessed relationships between circulating bio-ADM during the initial intensive care unit (ICU) stay and short-term outcome in order to eventually design a biomarker-guided randomized controlled trial. Methods: AdrenOSS-1 was a prospective observational multinational study. The primary outcome was 28-day mortality. Secondary outcomes included organ failure as defined by Sequential Organ Failure Assessment (SOFA) score, organ support with focus on vasopressor/inotropic use, and need for renal replacement therapy. AdrenOSS-1 included 583 patients admitted to the ICU with sepsis or septic shock. Results: Circulating bio-ADM levels were measured upon admission and at day 2. Median bio-ADM concentration upon admission was 80.5 pg/ml [IQR 41.5-148.1 pg/ml]. Initial SOFA score was 7 [IQR 5-10], and 28-day mortality was 22%. We found marked associations between bio-ADM upon admission and 28-day mortality (unadjusted standardized HR 2.3 [CI 1.9-2.9]; adjusted HR 1.6 [CI 1.1-2.5]) and between bio-ADM levels and SOFA score (p < 0.0001). Need of vasopressor/inotrope, renal replacement therapy, and positive fluid balance were more prevalent in patients with a bio-ADM > 70 pg/ml upon admission than in those with bio-ADM ≤ 70 pg/ml. In patients with bio-ADM > 70 pg/ml upon admission, decrease in bio-ADM below 70 pg/ml at day 2 was associated with recovery of organ function at day 7 and better 28-day outcome (9.5% mortality). By contrast, persistently elevated bio-ADM at day 2 was associated with prolonged organ dysfunction and high 28-day mortality (38.1% mortality, HR 4.9, 95% CI 2.5-9.8). Conclusions: AdrenOSS-1 shows that early levels and rapid changes in bio-ADM estimate short-term outcome in sepsis and septic shock. These data are the backbone of the design of the biomarker-guided AdrenOSS-2 trial. Trial registration: ClinicalTrials.gov, NCT02393781. Registered on March 19, 2015
- …
