606 research outputs found
Ion source for tests of ion behavior in the KATRIN beam line
An electron-impact ion source based on photoelectron emission was developed
for ionization of gases at pressures below 1e-4 mbar in an axial magnetic field
in the order of 5 T. The ion source applies only DC fields, which makes it
suitable for use in the presence of equipment sensitive to radio-frequency (RF)
fields. The ion source was succesfully tested under varying conditions
regarding pressure, magnetic field and magnetic-field gradient, and the results
were studied with the help of simulations. The processes in the ion source are
well understood and possibilities for further optimization of generated ion
currents are clarified.Comment: 10 pages, 13 figure
Transcribed ultraconserved noncoding RNAs (T-UCR) are involved in Barrett's esophagus carcinogenesis.
Barretts esophagus (BE) involves a metaplastic replacement of native esophageal squamous epithelium (Sq) by columnar-intestinalized mucosa, and it is the main risk factor for Barrett-related adenocarcinoma (BAc). Ultra-conserved regions (UCRs) are a class non-coding sequences that are conserved in humans, mice and rats. More than 90% of UCRs are transcribed (T-UCRs) in normal tissues, and are altered at transcriptional level in tumorigenesis. To identify the T-UCR profiles that are dysregulated in Barretts mucosa transformation, microarray analysis was performed on a discovery set of 51 macro-dissected samples obtained from 14 long-segment BE patients. Results were validated in an independent series of esophageal biopsy/surgery specimens and in two murine models of Barretts esophagus (i.e. esophagogastric-duodenal anastomosis). Progression from normal to BE to adenocarcinoma was each associated with specific and mutually exclusive T-UCR signatures that included up-regulation of uc.58-, uc.202-, uc.207-, and uc.223- and down-regulation of uc.214+. A 9 T-UCR signature characterized BE versus Sq (with the down-regulation of uc.161-, uc.165-, and uc.327-, and the up-regulation of uc.153-, uc.158-, uc.206-, uc.274-, uc.472-, and uc.473-). Analogous BE-specific T-UCR profiles were shared by human and murine lesions. This study is the first demonstration of a role for T-UCRs in the transformation of Barretts mucosa
Monitoring of tritium purity during long-term circulation in the KATRIN test experiment LOOPINO using laser Raman spectroscopy
The gas circulation loop LOOPINO has been set up and commissioned at Tritium
Laboratory Karlsruhe (TLK) to perform Raman measurements of circulating tritium
mixtures under conditions similar to the inner loop system of the neutrino-mass
experiment KATRIN, which is currently under construction. A custom-made
interface is used to connect the tritium containing measurement cell, located
inside a glove box, with the Raman setup standing on the outside. A tritium
sample (purity > 95%, 20 kPa total pressure) was circulated in LOOPINO for more
than three weeks with a total throughput of 770 g of tritium. Compositional
changes in the sample and the formation of tritiated and deuterated methanes
CT_(4-n)X_n (X=H,D; n=0,1) were observed. Both effects are caused by hydrogen
isotope exchange reactions and gas-wall interactions, due to tritium {\beta}
decay. A precision of 0.1% was achieved for the monitoring of the T_2
Q_1-branch, which fulfills the requirements for the KATRIN experiment and
demonstrates the feasibility of high-precision Raman measurements with tritium
inside a glove box
Experimental Status of Neutrino Physics
After a fascinating phase of discoveries, neutrino physics still has a few
mysteries such as the absolute mass scale, the mass hierarchy, the existence of
CP violation in the lepton sector and the existence of right-handed neutrinos.
It is also entering a phase of precision measurements. This is what motivates
the NUFACT 11 conference which prepares the future of long baseline neutrino
experiments. In this paper, we report the status of experimental neutrino
physics. We focus mainly on absolute mass measurements, oscillation parameters
and future plans for oscillation experiments
Recommended from our members
Improved Upper Limit on the Neutrino Mass from a Direct Kinematic Method by KATRIN.
We report on the neutrino mass measurement result from the first four-week science run of the Karlsruhe Tritium Neutrino experiment KATRIN in spring 2019. Beta-decay electrons from a high-purity gaseous molecular tritium source are energy analyzed by a high-resolution MAC-E filter. A fit of the integrated electron spectrum over a narrow interval around the kinematic end point at 18.57 keV gives an effective neutrino mass square value of (-1.0_{-1.1}^{+0.9}) eV^{2}. From this, we derive an upper limit of 1.1 eV (90% confidence level) on the absolute mass scale of neutrinos. This value coincides with the KATRIN sensitivity. It improves upon previous mass limits from kinematic measurements by almost a factor of 2 and provides model-independent input to cosmological studies of structure formation
Reassessing overlooked information about the diagnosis of Brachycephalus atelopoide (Anura:Brachycephalidae), a neglected problem for the taxonomy of the genus
Fundação Grupo Boticário de Proteção à NaturezaUniversidade Estadual Paulista Júlio de Mesquita Filho Instituto de Biociências, Praça Infante Dom Henrique s/nMater Natura - Instituto de Estudos Ambientais, Rua Emiliano Perneta, 297, sala 122Universidade Federal Do Paraná Departamento de ZoologiaUniversidade Estadual Paulista Júlio de Mesquita Filho Instituto de Biociências, Praça Infante Dom Henrique s/
Commissioning of the vacuum system of the KATRIN Main Spectrometer
The KATRIN experiment will probe the neutrino mass by measuring the
beta-electron energy spectrum near the endpoint of tritium beta-decay. An
integral energy analysis will be performed by an electro-static spectrometer
(Main Spectrometer), an ultra-high vacuum vessel with a length of 23.2 m, a
volume of 1240 m^3, and a complex inner electrode system with about 120000
individual parts. The strong magnetic field that guides the beta-electrons is
provided by super-conducting solenoids at both ends of the spectrometer. Its
influence on turbo-molecular pumps and vacuum gauges had to be considered. A
system consisting of 6 turbo-molecular pumps and 3 km of non-evaporable getter
strips has been deployed and was tested during the commissioning of the
spectrometer. In this paper the configuration, the commissioning with bake-out
at 300{\deg}C, and the performance of this system are presented in detail. The
vacuum system has to maintain a pressure in the 10^{-11} mbar range. It is
demonstrated that the performance of the system is already close to these
stringent functional requirements for the KATRIN experiment, which will start
at the end of 2016.Comment: submitted for publication in JINST, 39 pages, 15 figure
Humanized Foxp2 accelerates learning by enhancing transitions from declarative to procedural performance
The acquisition of language and speech is uniquely human, but how genetic changes might have adapted the nervous system to this capacity is not well understood. Two human-specific amino acid substitutions in the transcription factor forkhead box P2 (FOXP2) are outstanding mechanistic candidates, as they could have been positively selected during human evolution and as FOXP2 is the sole gene to date firmly linked to speech and language development. When these two substitutions are introduced into the endogenous Foxp2 gene of mice (Foxp2[superscript hum]), cortico-basal ganglia circuits are specifically affected. Here we demonstrate marked effects of this humanization of Foxp2 on learning and striatal neuroplasticity. Foxp2[superscript hum/hum] mice learn stimulus–response associations faster than their WT littermates in situations in which declarative (i.e., place-based) and procedural (i.e., response-based) forms of learning could compete during transitions toward proceduralization of action sequences. Striatal districts known to be differently related to these two modes of learning are affected differently in the Foxp2[superscript hum/hum] mice, as judged by measures of dopamine levels, gene expression patterns, and synaptic plasticity, including an NMDA receptor-dependent form of long-term depression. These findings raise the possibility that the humanized Foxp2 phenotype reflects a different tuning of corticostriatal systems involved in declarative and procedural learning, a capacity potentially contributing to adapting the human brain for speech and language acquisition.Nancy Lurie Marks Family FoundationSimons Foundation (Autism Research Initiative Grant 137593)National Institutes of Health (U.S.) (Grant R01 MH060379)Wellcome Trust (London, England) (Grant 075491/Z/04)Wellcome Trust (London, England) (Grant 080971)Fondation pour la recherche medicaleMax Planck Society for the Advancement of Scienc
- …
