655 research outputs found
Excitations of amorphous solid helium
We present neutron scattering measurements of the dynamic structure factor,
, of amorphous solid helium confined in 47 pore diameter
MCM-41 at pressure 48.6 bar. At low temperature, = 0.05 K, we observe
of the confined quantum amorphous solid plus the bulk
polycrystalline solid between the MCM-41 powder grains. No liquid-like
phonon-roton modes, other sharply defined modes at low energy ( 1.0
meV) or modes unique to a quantum amorphous solid that might suggest superflow
are observed. Rather the of confined amorphous and bulk
polycrystalline solid appear to be very similar. At higher temperature ( 1
K), the amorphous solid in the MCM-41 pores melts to a liquid which has a broad
peaked near 0 characteristic of normal liquid
He under pressure. Expressions for the of amorphous and
polycrystalline solid helium are presented and compared. In previous
measurements of liquid He confined in MCM-41 at lower pressure the
intensity in the liquid roton mode decreases with increasing pressure until the
roton vanishes at the solidification pressure (38 bars), consistent with no
roton in the solid observed here
New excitations in bcc He - an inelastic neutron scattering study
We report neutron scattering measurements on bcc solid % He. We studied
the phonon branches and the recently discovered ''optic-like'' branch along the
main crystalline directions. In addition, we discovered another, dispersionless
"optic-like'' branch at an energy around 1 meV (~11K). The properties of
the two "optic-like" branches seem different. Since one expects only 3 acoustic
phonon branches in a monoatomic cubic crystal, these new branches must
represent different type of excitations. One possible interpretation involves
localized excitations unique to a quantum solid.Comment: 4 pages, 3 figures, accepted by PRB, Rapid Communication
AGMIAL: implementing an annotation strategy for prokaryote genomes as a distributed system
We have implemented a genome annotation system for prokaryotes called AGMIAL. Our approach embodies a number of key principles. First, expert manual annotators are seen as a critical component of the overall system; user interfaces were cyclically refined to satisfy their needs. Second, the overall process should be orchestrated in terms of a global annotation strategy; this facilitates coordination between a team of annotators and automatic data analysis. Third, the annotation strategy should allow progressive and incremental annotation from a time when only a few draft contigs are available, to when a final finished assembly is produced. The overall architecture employed is modular and extensible, being based on the W3 standard Web services framework. Specialized modules interact with two independent core modules that are used to annotate, respectively, genomic and protein sequences. AGMIAL is currently being used by several INRA laboratories to analyze genomes of bacteria relevant to the food-processing industry, and is distributed under an open source license
Time domain radiation and absorption by subwavelength sources
Radiation by elementary sources is a basic problem in wave physics. We show
that the time-domain energy flux radiated from electromagnetic and acoustic
subwalength sources exhibits remarkable features. In particular, a subtle
trade-off between source emission and absorption underlies the mechanism of
radiation. This behavior should be observed for any kind of classical waves,
thus having broad potential implications. We discuss the implication for
subwavelength focusing by time reversal with active sources
A Semi-Lagrangian scheme for a modified version of the Hughes model for pedestrian flow
In this paper we present a Semi-Lagrangian scheme for a regularized version
of the Hughes model for pedestrian flow. Hughes originally proposed a coupled
nonlinear PDE system describing the evolution of a large pedestrian group
trying to exit a domain as fast as possible. The original model corresponds to
a system of a conservation law for the pedestrian density and an Eikonal
equation to determine the weighted distance to the exit. We consider this model
in presence of small diffusion and discuss the numerical analysis of the
proposed Semi-Lagrangian scheme. Furthermore we illustrate the effect of small
diffusion on the exit time with various numerical experiments
Effect of Nonmagnetic Impurities on the Magnetic Resonance Peak in YBa2Cu3O7
The magnetic excitation spectrum of a YBa_2 Cu_3 O_7 crystal containing 0.5%
of nonmagnetic (Zn) impurities has been determined by inelastic neutron
scattering. Whereas in the pure system a sharp resonance peak at E ~ 40 meV is
observed exclusively below the superconducting transition temperature T_c, the
magnetic response in the Zn-substituted system is broadened significantly and
vanishes at a temperature much higher than T_c. The energy-integrated spectral
weight observed near q = (pi,pi) increases with Zn substitution, and only about
half of the spectral weight is removed at T_c
Quantum Impurities and the Neutron Resonance Peak in : Ni versus Zn
The influence of magnetic (S=1) and nonmagnetic (S=0) impurities on the spin
dynamics of an optimally doped high temperature superconductor is compared in
two samples with almost identical superconducting transition temperatures:
YBa(CuNi)O (T=80 K) and
YBa(CuZn)O (T=78 K). In the Ni-substituted
system, the magnetic resonance peak (which is observed at E40 meV in
the pure system) shifts to lower energy with a preserved E/T ratio
while the shift is much smaller upon Zn substitution. By contrast Zn, but not
Ni, restores significant spin fluctuations around 40 meV in the normal state.
These observations are discussed in the light of models proposed for the
magnetic resonance peak.Comment: 3 figures, submitted to PR
Role of mitochondrial raft-like microdomains in the regulation of cell apoptosis
Lipid rafts are envisaged as lateral assemblies of specific lipids and proteins that dissociate and associate rapidly and form functional clusters in cell membranes. These structural platforms are not confined to the plasma membrane; indeed lipid microdomains are similarly formed at subcellular organelles, which include endoplasmic reticulum, Golgi and mitochondria, named raft-like microdomains. In addition, some components of raft-like microdomains are present within ER-mitochondria associated membranes. This review is focused on the role of mitochondrial raft-like microdomains in the regulation of cell apoptosis, since these microdomains may represent preferential sites where key reactions take place, regulating mitochondria hyperpolarization, fission-associated changes, megapore formation and release of apoptogenic factors. These structural platforms appear to modulate cytoplasmic pathways switching cell fate towards cell survival or death. Main insights on this issue derive from some pathological conditions in which alterations of microdomains structure or function can lead to severe alterations of cell activity and life span. In the light of the role played by raft-like microdomains to integrate apoptotic signals and in regulating mitochondrial dynamics, it is conceivable that these membrane structures may play a role in the mitochondrial alterations observed in some of the most common human neurodegenerative diseases, such as Amyotrophic lateral sclerosis, Huntington's chorea and prion-related diseases. These findings introduce an additional task for identifying new molecular target(s) of pharmacological agents in these pathologies
A narrative review on the similarities and dissimilarities between myalgic encephalomyelitis/chronic fatigue syndrome (me/cfs) and sickness behavior
It is of importance whether myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) is a variant of sickness behavior. The latter is induced by acute infections/injury being principally mediated through proinflammatory cytokines. Sickness is a beneficial behavioral response that serves to enhance recovery, conserves energy and plays a role in the resolution of inflammation. There are behavioral/symptomatic similarities (for example, fatigue, malaise, hyperalgesia) and dissimilarities (gastrointestinal symptoms, anorexia and weight loss) between sickness and ME/CFS. While sickness is an adaptive response induced by proinflammatory cytokines, ME/CFS is a chronic, disabling disorder, where the pathophysiology is related to activation of immunoinflammatory and oxidative pathways and autoimmune responses. While sickness behavior is a state of energy conservation, which plays a role in combating pathogens, ME/CFS is a chronic disease underpinned by a state of energy depletion. While sickness is an acute response to infection/injury, the trigger factors in ME/CFS are less well defined and encompass acute and chronic infections, as well as inflammatory or autoimmune diseases. It is concluded that sickness behavior and ME/CFS are two different conditions
In-vivo visualisation of the anatomical structures related to the acupuncture points Dai mai and Shen mai by MRI: A single-case pilot study
BACKGROUND: The concept of acupuncture point localisation in Traditional Chinese Medicine (TCM) is based on millenary practical experience. Modern imaging methods such as PET, MRI and SPECT have been used primary for the investigation of the mechanisms of action of acupuncture. In this pilot single-case study we have evaluated the technical possibilities for in-vivo imaging of the anatomical relations of acupuncture points using state of the art MRI. METHODS: Preliminary experiments relating to the quality of acupuncture needles under the setting of MRI were done both with stainless steel and gold needles. In a second step, in-vivo imaging was carried out. A licensed acupuncture practitioner (RM) chose two points belonging to the so-called extraordinary vessels. In 2 sequential, separate procedures, he inserted himself gold acupuncture needles using a neutral technique (known as Ping Bu Ping Xie) into the Dai mai and Shen mai points, i.e. gall bladder 26 and bladder 62. Imaging was done on a Siemens Magnetom Avanto MR scanner using a head array and body coil. Mainly T1-weighted imaging sequences, as routinely used for patient exams, were used to obtain multi-slice images. RESULTS: In the preliminary experiments only acupuncture needles made of gold showed enough stability in order to be used for further imaging procedures. Using an onion and a banana as an object, further studies showed that the gold needles produced a void defect that corresponds to the tip of the inserted needle, while at the same time an artefactually increased diameter was observed. The in-vivo experiments showed that the Dai mai point was in relation to the abdominal internal oblique muscle. The Shen mai point artefact showed up close to the longus and brevis peroneal tendons at the fibular malleolus. Side effects related to heating or burning were not observed. Improved anatomical recognition was obtained using 3D-volume rendering techniques. CONCLUSION: Through an adequate choice of acupuncture material (gold needles) as well as of ideal MRI imaging sequences it has been possible to visualize the anatomical characteristics at the acupuncture points Dai mai and Shen mai in-vivo. At the selected sites the needles showed a relation to tendino-fascial and muscular structures. These anatomical structures fit well into the recently described WOMED concept of lateral tension in which these acupuncture points play a regulatory role
- …
