569 research outputs found

    Forbush decreases and turbulence levels at CME fronts

    Full text link
    We seek to estimate the average level of MHD turbulence near coronal mass ejection (CME) fronts as they propagate from the Sun to the Earth. We examine the cosmic ray data from the GRAPES-3 tracking muon telescope at Ooty, together with the data from other sources for three well observed Forbush decrease events. Each of these events are associated with frontside halo Coronal Mass Ejections (CMEs) and near-Earth magnetic clouds. In each case, we estimate the magnitude of the Forbush decrease using a simple model for the diffusion of high energy protons through the largely closed field lines enclosing the CME as it expands and propagates from the Sun to the Earth. We use estimates of the cross-field diffusion coefficient DD_{\perp} derived from published results of extensive Monte Carlo simulations of cosmic rays propagating through turbulent magnetic fields. Our method helps constrain the ratio of energy density in the turbulent magnetic fields to that in the mean magnetic fields near the CME fronts. This ratio is found to be \sim 2% for the 11 April 2001 Forbush decrease event, \sim 6% for the 20 November 2003 Forbush decrease event and \sim 249% for the much more energetic event of 29 October 2003.Comment: Accepted for publication in Astronomy and Astrophysics. (Abstract abridged) Typos correcte

    Solar and Heliospheric Observatory (SOHO) (1995)

    Get PDF
    SOHO is the most comprehensive space mission ever devoted to the study of the Sun and its nearby cosmic environment known as the heliosphere. It was launched in December 1995 and is currently funded at least through the end of 2016. SOHO's twelve instruments observe and measure structures and processes occurring inside as well as outside the Sun, and which reach well beyond Earth's orbit into the heliosphere. While designed to study the "quiet" Sun, the new capabilities and combination of several SOHO instruments have revolutionized space weather research. This article gives a brief mission overview, summarizes selected highlight results, and describes SOHO's contributions to space weather research. These include cotemporaneous EUV imaging of activity in the Sun's corona and white light imaging of coronal mass ejections in the extended corona, magnetometry in the Sun's atmosphere, imaging of far side activity, measurements to predict solar proton storms, and monitoring solar wind plasma at the L1 Lagrangian point, 1.5 million kilometers upstream of Earth

    Multiwavelength Study on Solar and Interplanetary Origins of the Strongest Geomagnetic Storm of Solar Cycle 23

    Full text link
    We study the solar sources of an intense geomagnetic storm of solar cycle 23 that occurred on 20 November 2003, based on ground- and space-based multiwavelength observations. The coronal mass ejections (CMEs) responsible for the above geomagnetic storm originated from the super-active region NOAA 10501. We investigate the H-alpha observations of the flare events made with a 15 cm solar tower telescope at ARIES, Nainital, India. The propagation characteristics of the CMEs have been derived from the three-dimensional images of the solar wind (i.e., density and speed) obtained from the interplanetary scintillation data, supplemented with other ground- and space-based measurements. The TRACE, SXI and H-alpha observations revealed two successive ejections (of speeds ~350 and ~100 km/s), originating from the same filament channel, which were associated with two high speed CMEs (~1223 and ~1660 km/s, respectively). These two ejections generated propagating fast shock waves (i.e., fast drifting type II radio bursts) in the corona. The interaction of these CMEs along the Sun-Earth line has led to the severity of the storm. According to our investigation, the interplanetary medium consisted of two merging magnetic clouds (MCs) that preserved their identity during their propagation. These magnetic clouds made the interplanetary magnetic field (IMF) southward for a long time, which reconnected with the geomagnetic field, resulting the super-storm (Dst_peak=-472 nT) on the Earth.Comment: 24 pages, 16 figures, Accepted for publication in Solar Physic

    Plasma Depletion and Mirror Waves Ahead of Interplanetary Coronal Mass Ejections

    Full text link
    We find that the sheath regions between fast interplanetary coronal mass ejections (ICMEs) and their preceding shocks are often characterized by plasma depletion and mirror wave structures, analogous to planetary magnetosheaths. A case study of these signatures in the sheath of a magnetic cloud (MC) shows that a plasma depletion layer (PDL) coincides with magnetic field draping around the MC. In the same event, we observe an enhanced thermal anisotropy and plasma beta as well as anti-correlated density and magnetic fluctuations which are signatures of mirror mode waves. We perform a superposed epoch analysis of ACE and Wind plasma and magnetic field data from different classes of ICMEs to illuminate the general properties of these regions. For MCs preceded by shocks, the sheaths have a PDL with an average duration of 6 hours (corresponding to a spatial span of about 0.07 AU) and a proton temperature anisotropy TpTp1.2{T_{\perp p}\over T_{\parallel p}}\simeq 1.2 -1.3, and are marginally unstable to the mirror instability. For ICMEs with preceding shocks which are not MCs, plasma depletion and mirror waves are also present but at a reduced level. ICMEs without shocks are not associated with these features. The differences between the three ICME categories imply that these features depend on the ICME geometry and the extent of upstream solar wind compression by the ICMEs. We discuss the implications of these features for a variety of crucial physical processes including magnetic reconnection, formation of magnetic holes and energetic particle modulation in the solar wind.Comment: fully refereed, accepted for publication in J. Geophys. Re

    Galactic Abundances: Report of Working Group 3

    Get PDF
    We summarize the various methods and their limitations and strengths to derive galactic abundances from in-situ and remote-sensing measurements, both from ground-based observations and from instruments in space. Because galactic abundances evolve in time and space it is important to obtain information with a variety of different methods covering different regions from the Very Local Insterstellar Medium (VLISM) to the distant galaxy, and different times throughout the evolution of the galaxy. We discuss the study of the present-day VLISM with neutral gas, pickup ions, and Anomalous Cosmic Rays, the study of the local interstellar medium (ISM) at distances <1.5 kpc utilizing absorption line measurements in H I clouds, and the study of galactic cosmic rays, sampling contemporary (~15 Myr) sources in the local ISM within a few kiloparsec of the solar system. Solar system abundances, derived from solar abundances and meteorite studies are discussed in several other chapters of this volume. They provide samples of matter from the ISM from the time of solar system format ion, about 4.5 Gyr ago. The evolution of galactic abundances on longer time scales is discussed in the context of nuclear synthesis in the various contributing stellar objects

    The structure and origin of magnetic clouds in the solar wind

    Full text link

    Interspecific hybridization with Hordeum bulbosum and development of hybrids and haploids

    Get PDF
    Subrahmanyam, N.C. and Bothmer, R. von, 1987. Interspecific hybridization with Hordeum bulbosum and development of hybrids and haploids. - Hereditas 106: 119-127. Lund, Sweden. ISSN 001-0661. Received May 2, 1986.A total of 64 interspecific crossing combinations with H. bulbosum (2x and 4x) were attempted. The maximum seed set was generally very high. Progeny was obtained in 19 combinations with diploid and 13 combinations with tetraploid H. bulbosum. As a result of selective chromosome elimination, haploids were recorded in 7 interspecific combinations with diploid and 7 with tctraploid H. bulbosum. There are 7 new haploid-producing combinations, viz. H. cordobense monohaploids, H. marinum mono- and dihaploids. and H. brevisubularum di- and trihaploids in crosses with H. bulbosum (4x), H. capense dihaploids and H. murinum dihaploids with H. bulbosum (2x). The theory of a hierarchical chromosome elimination system is strengthened by the present results.Roland yon Bothmer, Department of Crop Genetics and Breeding, Swedish University of Agricultural Sciences, S-268 00 Svalov, Sweden

    Wheat-barley hybridization – the last forty years

    Get PDF
    Abstract Several useful alien gene transfers have been reported from related species into wheat (Triticum aestivum), but very few publications have dealt with the development of wheat/barley (Hordeum vulgare) introgression lines. An overview is given here of wheat 9 barley hybridization over the last forty years, including the development of wheat 9 barley hybrids, and of addition and translocation lines with various barley cultivars. A short summary is also given of the wheat 9 barley hybrids produced with other Hordeum species. The meiotic pairing behaviour of wheat 9 barley hybrids is presented, with special regard to the detection of wheat– barley homoeologous pairing using the molecular cytogenetic technique GISH. The effect of in vitro multiplication on the genome composition of intergeneric hybrids is discussed, and the production and characterization of the latest wheat/barley translocation lines are presented. An overview of the agronomical traits (b-glucan content, earliness, salt tolerance, sprouting resistance, etc.) of the newly developed introgression lines is given. The exploitation and possible use of wheat/barley introgression lines for the most up-to-date molecular genetic studies (transcriptome analysis, sequencing of flow-sorted chromosomes) are also discussed
    corecore