2,014 research outputs found
Automated Negotiation for Provisioning Virtual Private Networks Using FIPA-Compliant Agents
This paper describes the design and implementation of negotiating agents for the task of provisioning virtual private networks. The agents and their interactions comply with the FIPA specification and they are implemented using the FIPA-OS agent framework. Particular attention is focused on the design and implementation of the negotiation algorithms
Versatile liquid helium scintillation counter of large volume design
Design and performance of large liquid helium scintillation counter for meson experiment
High field magneto-transport in high mobility gated InSb/InAlSb quantum well heterostructures
We present high field magneto-transport data from a range of 30nm wide
InSb/InAlSb quantum wells. The low temperature carrier mobility of the samples
studied ranged from 18.4 to 39.5 m2V-1s-1 with carrier densities between
1.5x1015 and 3.28x1015 m-2. Room temperature mobilities are reported in excess
of 6 m2V-1s-1. It is found that the Landau level broadening decreases with
carrier density and beating patterns are observed in the magnetoresistance with
non-zero node amplitudes in samples with the narrowest broadening despite the
presence of a large g-factor. The beating is attributed to Rashba splitting
phenomenon and Rashba coupling parameters are extracted from the difference in
spin populations for a range of samples and gate biases. The influence of
Landau level broadening and spin-dependent scattering rates on the observation
of beating in the Shubnikov-de Haas oscillations is investigated by simulations
of the magnetoconductance. Data with non-zero beat node amplitudes are
accompanied by asymmetric peaks in the Fourier transform, which are
successfully reproduced by introducing a spin-dependent broadening in the
simulations. It is found that the low-energy (majority) spin up state suffers
more scattering than the high-energy (minority) spin down state and that the
absence of beating patterns in the majority of (lower density) samples can be
attributed to the same effect when the magnitude of the level broadening is
large
Molecular Tracers of Embedded Star Formation in Ophiuchus
In this paper we analyze nine SCUBA cores in Ophiuchus using the
second-lowest rotational transitions of four molecular species (12CO, 13CO,
C18O, and C17O) to search for clues to the evolutionary state and
star-formation activity within each core. Specifically, we look for evidence of
outflows, infall, and CO depletion. The line wings in the CO spectra are used
to detect outflows, spectral asymmetries in 13CO are used to determine infall
characteristics, and a comparison of the dust emission (from SCUBA
observations) and gas emission (from C18O) is used to determine the fractional
CO freeze-out.
Through comparison with Spitzer observations of protostellar sources in
Ophiuchus, we discuss the usefulness of CO and its isotopologues as the sole
indicators of the evolutionary state of each core. This study is an important
pilot project for the JCMT Legacy Survey of the Gould Belt (GBS) and the
Galactic Plane (JPS), which intend to complement the SCUBA-2 dust continuum
observations with HARP observations of 12CO, 13CO, C18O, and C17O J = 3 - 2 in
order to determine whether or not the cold dust clumps detected by SCUBA-2 are
protostellar or starless objects.
Our classification of the evolutionary state of the cores (based on molecular
line maps and SCUBA observations) is in agreement with the Spitzer designation
for six or seven of the nine SCUBA cores. However, several important caveats
exist in the interpretation of these results, many of which large mapping
surveys like the GBS may be able to overcome to provide a clearer picture of
activity in crowded fields.Comment: 43 pages including 19 postscript figures. Accepted for publication in
the PAS
Shoulder posture and median nerve sliding
Background: Patients with upper limb pain often have a slumped sitting position and poorshoulder posture. Pain could be due to poor posture causing mechanical changes (stretch; localpressure) that in turn affect the function of major limb nerves (e.g. median nerve). This studyexamines (1) whether the individual components of slumped sitting (forward head position, trunkflexion and shoulder protraction) cause median nerve stretch and (2) whether shoulderprotraction restricts normal nerve movements.Methods: Longitudinal nerve movement was measured using frame-by-frame cross-correlationanalysis from high frequency ultrasound images during individual components of slumped sitting.The effects of protraction on nerve movement through the shoulder region were investigated byexamining nerve movement in the arm in response to contralateral neck side flexion.Results: Neither moving the head forward or trunk flexion caused significant movement of themedian nerve. In contrast, 4.3 mm of movement, adding 0.7% strain, occurred in the forearm duringshoulder protraction. A delay in movement at the start of protraction and straightening of thenerve trunk provided evidence of unloading with the shoulder flexed and elbow extended and thescapulothoracic joint in neutral. There was a 60% reduction in nerve movement in the arm duringcontralateral neck side flexion when the shoulder was protracted compared to scapulothoracicneutral.Conclusion: Slumped sitting is unlikely to increase nerve strain sufficient to cause changes tonerve function. However, shoulder protraction may place the median nerve at risk of injury, sincenerve movement is reduced through the shoulder region when the shoulder is protracted andother joints are moved. Both altered nerve dynamics in response to moving other joints and localchanges to blood supply may adversely affect nerve function and increase the risk of developingupper quadrant pain
Chiminey: Reliable Computing and Data Management Platform in the Cloud
The enabling of scientific experiments that are embarrassingly parallel, long
running and data-intensive into a cloud-based execution environment is a
desirable, though complex undertaking for many researchers. The management of
such virtual environments is cumbersome and not necessarily within the core
skill set for scientists and engineers. We present here Chiminey, a software
platform that enables researchers to (i) run applications on both traditional
high-performance computing and cloud-based computing infrastructures, (ii)
handle failure during execution, (iii) curate and visualise execution outputs,
(iv) share such data with collaborators or the public, and (v) search for
publicly available data.Comment: Preprint, ICSE 201
Systems mapping workshops and their role in understanding medication errors in healthcare
In this paper for Applied Ergonomics, one of the two leading journals for ergonomics/human factors, Buckle et al. discuss the role of mapping workshops in understanding medication errors in healthcare. They draw upon research that used mapping workshops as a method that systems designers, including human factors/ergonomics specialists, can use to help generate a knowledge base for better design requirements.
Buckle et al. applied systems mapping workshops for the first time to the problem of medication errors in healthcare. The workshops were designed using experiential group work principles. They involved a range of stakeholders from within the health service as well as those who supply the health sector, including designers who may be able to enhance the safety of products and systems used in healthcare.
The opportunity for using these methods to study patient safety issues arose as a result of a scoping study undertaken on behalf of the UK Department of Health and The Design Council. As the scope of patient safety issues within the healthcare system and the range of stakeholder groups is large (National Patient Safety Agency 2005), it was believed that mapping workshops might enhance system design in health. The results were rich from a design perspective, giving specific details of actual incidences, contexts and practices, with further depth of information emerging in the group working sessions. A wealth of detail on aspects of medication error, especially in the community, emerged from creative, primary, secondary and patient-support group sessions. As a process, similar stakeholder workshops could help designers understand better the complexity and range of factors to be taken into account.
The methods are now being used in many areas of healthcare and social care design, for example by the Technology Strategy Board funded research into Telecare (see http://www.aktive.org.uk/)
The JCMT Gould Belt Survey: understanding the influence of outflows on Gould Belt clouds
JOURThis is the final version of the article. It was first published by Oxford Journals for the Royal Astronomical Society via http://dx.doi.org/10.1093/mnrasl/slv202Using James Clerk Maxwell Telescope (JCMT) Gould Belt Survey data from CO J = 3 → 2 isotopologues, we present a meta-analysis of the outflows and energetics of star-forming regions in several Gould Belt clouds. The majority of the regions are strongly gravitationally bound. There is evidence that molecular outflows transport large quantities of momentum and energy. Outflow energies are at least 20 per cent of the total turbulent kinetic energies in all of the regions studied and greater than the turbulent energy in half of the regions. However, we find no evidence that outflows increase levels of turbulence, and there is no correlation between the outflow and turbulent energies. Even though outflows in some regions contribute significantly to maintaining turbulence levels against dissipation, this relies on outflows efficiently coupling to bulk motions. Other mechanisms (e.g. supernovae) must be the main drivers of turbulence in most if not all of these regions
The JCMT 12CO(3-2) Survey of the Cygnus X Region: I. A Pathfinder
Cygnus X is one of the most complex areas in the sky. This complicates
interpretation, but also creates the opportunity to investigate accretion into
molecular clouds and many subsequent stages of star formation, all within one
small field of view. Understanding large complexes like Cygnus X is the key to
understanding the dominant role that massive star complexes play in galaxies
across the Universe.
The main goal of this study is to establish feasibility of a high-resolution
CO survey of the entire Cygnus X region by observing part of it as a
Pathfinder, and to evaluate the survey as a tool for investigating the
star-formation process.
A 2x4 degree area of the Cygnus X region has been mapped in the 12CO(3-2)
line at an angular resolution of 15" and a velocity resolution of ~0.4km/s
using HARP-B and ACSIS on the James Clerk Maxwell Telescope. The star formation
process is heavily connected to the life-cycle of the molecular material in the
interstellar medium. The high critical density of the 12CO(3-2) transition
reveals clouds in key stages of molecule formation, and shows processes that
turn a molecular cloud into a star.
We observed ~15% of Cygnus X, and demonstrated that a full survey would be
feasible and rewarding. We detected three distinct layers of 12CO(3-2)
emission, related to the Cygnus Rift (500-800 pc), to W75N (1-1.8 kpc), and to
DR21 (1.5-2.5 kpc). Within the Cygnus Rift, HI self-absorption features are
tightly correlated with faint diffuse CO emission, while HISA features in the
DR21 layer are mostly unrelated to any CO emission. 47 molecular outflows were
detected in the Pathfinder, 27 of them previously unknown. Sequentially
triggered star formation is a widespread phenomenon.Comment: 18 pages, 13 figures, accepted for publication in Astronomy &
Astrophysic
Band gap reduction in GaNSb alloys due to the anion mismatch
The structural and optoelectronic properties in GaNxSb1–x alloys (0<=x<0.02) grown by molecular-beam epitaxy on both GaSb substrates and AlSb buffer layers on GaAs substrates are investigated. High-resolution x-ray diffraction (XRD) and reciprocal space mapping indicate that the GaNxSb1–x epilayers are of high crystalline quality and the alloy composition is found to be independent of substrate, for identical growth conditions. The band gap of the GaNSb alloys is found to decrease with increasing nitrogen content from absorption spectroscopy. Strain-induced band-gap shifts, Moss-Burstein effects, and band renormalization were ruled out by XRD and Hall measurements. The band-gap reduction is solely due to the substitution of dilute amounts of highly electronegative nitrogen for antimony, and is greater than observed in GaNAs with the same N content
- …
