14,172 research outputs found
Gravitational wave generation from bubble collisions in first-order phase transitions: an analytic approach
Gravitational wave production from bubble collisions was calculated in the
early nineties using numerical simulations. In this paper, we present an
alternative analytic estimate, relying on a different treatment of
stochasticity. In our approach, we provide a model for the bubble velocity
power spectrum, suitable for both detonations and deflagrations. From this, we
derive the anisotropic stress and analytically solve the gravitational wave
equation. We provide analytical formulae for the peak frequency and the shape
of the spectrum which we compare with numerical estimates. In contrast to the
previous analysis, we do not work in the envelope approximation. This paper
focuses on a particular source of gravitational waves from phase transitions.
In a companion article, we will add together the different sources of
gravitational wave signals from phase transitions: bubble collisions,
turbulence and magnetic fields and discuss the prospects for probing the
electroweak phase transition at LISA.Comment: 48 pages, 14 figures. v2 (PRD version): calculation refined; plots
redone starting from Fig. 4. Factor 2 in GW energy spectrum corrected. Main
conclusions unchanged. v3: Note added at the end of paper to comment on the
new results of 0901.166
A Multi-Moded RF Delay Line Distribution System for the Next Linear Collider
The Delay Line Distribution System (DLDS) is an alternative to conventional
pulse compression, which enhances the peak power of rf sources while matching
the long pulse of those sources to the shorter filling time of accelerator
structures. We present an implementation of this scheme that combines pairs of
parallel delay lines of the system into single lines. The power of several
sources is combined into a single waveguide delay line using a multi-mode
launcher. The output mode of the launcher is determined by the phase coding of
the input signals. The combined power is extracted from the delay line using
mode-selective extractors, each of which extracts a single mode. Hence, the
phase coding of the sources controls the output port of the combined power. The
power is then fed to the local accelerator structures. We present a detailed
design of such a system, including several implementation methods for the
launchers, extractors, and ancillary high power rf components. The system is
designed so that it can handle the 600 MW peak power required by the NLC design
while maintaining high efficiency.Comment: 25 pages, 11 figure
Time-reversible Born-Oppenheimer molecular dynamics
We present a time-reversible Born-Oppenheimer molecular dynamics scheme,
based on self-consistent Hartree-Fock or density functional theory, where both
the nuclear and the electronic degrees of freedom are propagated in time. We
show how a time-reversible adiabatic propagation of the electronic degrees of
freedom is possible despite the non-linearity and incompleteness of the
self-consistent field procedure. Time-reversal symmetry excludes a systematic
long-term energy drift for a microcanonical ensemble and the number of
self-consistency cycles can be kept low (often only 2-4 cycles per nuclear time
step) thanks to a good initial guess given by the adiabatic propagation of the
electronic degrees of freedom. The time-reversible Born-Oppenheimer molecular
dynamics scheme therefore combines a low computational cost with a physically
correct time-reversible representation of the dynamics, which preserves a
detailed balance between propagation forwards and backwards in time.Comment: 4 pages, 4 figure
Detection of gravitational waves from the QCD phase transition with pulsar timing arrays
If the cosmological QCD phase transition is strongly first order and lasts
sufficiently long, it generates a background of gravitational waves which may
be detected via pulsar timing experiments. We estimate the amplitude and the
spectral shape of such a background and we discuss its detectability prospects.Comment: 7 pages, 5 figs. Version accepted by PR
Manderlay (2005): Lars von Trier’s Narrative of Passing
Von Trier, the maverick Danish director, has over the course of his career earned a reputation for being difficult; he has a tendency to create films that are not only challenging but demand an active level of participation from his audience. The film Manderlay (2005) continues this tradition of provoking intellectual debate. Whereas numerous scholars and critics have recognised that the film can be read as a metaphorical reference to George W. Bush's invasion of Iraq, this article interprets Manderlay as an allegory for the way African Americans have been represented by the US film industry
The Cut-Constructible Part of QCD Amplitudes
Unitarity cuts are widely used in analytic computation of loop amplitudes in
gauge theories such as QCD. We expand upon the technique introduced in
hep-ph/0503132 to carry out any finite unitarity cut integral. This technique
naturally separates the contributions of bubble, triangle and box integrals in
one-loop amplitudes and is not constrained to any particular helicity
configurations. Loop momentum integration is reduced to a sequence of algebraic
operations. We discuss the extraction of the residues at higher-order poles.
Additionally, we offer concise algebraic formulas for expressing coefficients
of three-mass triangle integrals. As an application, we compute all remaining
coefficients of bubble and triangle integrals for nonsupersymmetric six-gluon
amplitudes.Comment: 78 pages, 3 fig
Magnetic states of linear defects in graphene monolayers: effects of strain and interaction
The combined effects of defect-defect interaction and of uniaxial or biaxial
strains of up to 10\% on the development of magnetic states on the
defect-core-localized quasi-one-dimensional electronic states generated by the
so-called 558 linear extended defect in graphene monolayers are investigated by
means of {\it ab initio} calculations. Results are analyzed on the basis of the
heuristics of the Stoner criterion. We find that conditions for the emergence
of magnetic states on the 558 defect can be tuned by uniaxial tensile parallel
strains (along the defect direction) at both limits of isolated and interacting
558 defects. Parallel strains are shown to lead to two cooperative effects that
favor the emergence of itinerant magnetism: enhancement of the DOS of the
resonant defect states in the region of the Fermi level and tuning of the Fermi
level to the maximum of the related DOS peak. A perpendicular strain is
likewise shown to enhance the DOS of the defect states, but it also effects a
detunig of the Fermi level that shifts away from the maximum of the DOS of the
defect states, which inhibts the emergence of magnetic states. As a result,
under biaxial strains the stabilization of a magnetic state depends on the
relative magnitudes of the two components of strain.Comment: 9 pages 8 figure
The Kaon B-parameter in Mixed Action Chiral Perturbation Theory
We calculate the kaon B-parameter, B_K, in chiral perturbation theory for a
partially quenched, mixed action theory with Ginsparg-Wilson valence quarks and
staggered sea quarks. We find that the resulting expression is similar to that
in the continuum, and in fact has only two additional unknown parameters. At
one-loop order, taste-symmetry violations in the staggered sea sector only
contribute to flavor-disconnected diagrams by generating an O(a^2) shift to the
masses of taste-singlet sea-sea mesons. Lattice discretization errors also give
rise to an analytic term which shifts the tree-level value of B_K by an amount
of O(a^2). This term, however, is not strictly due to taste-breaking, and is
therefore also present in the expression for B_K for pure G-W lattice fermions.
We also present a numerical study of the mixed B_K expression in order to
demonstrate that both discretization errors and finite volume effects are small
and under control on the MILC improved staggered lattices.Comment: 29 pages, 4 figures; Expanded spurion discussion, other discussions
clarified, version to appear in PR
- …
