940 research outputs found
Testing general relativity with accretion onto compact objects
The X-ray emission of neutron stars and black holes presents a rich
phenomenology that can lead us to a better understanding of their nature and to
address more general physics questions: Does general relativity apply in the
strong gravity regime? Is spacetime around black holes described by the Kerr
metric? This white paper considers how we can investigate these questions by
studying reverberation mapping and quasi-periodic oscillations in accreting
systems with a combination of high-spectral and high-timing resolution. In the
near future, we will be able to study compact objects in the X-rays in a new
way: advancements in transition-edge sensors (TES) technology will allow for
electron-volt-resolution spectroscopy combined with nanoseconds-precision
timing.Comment: White paper submitted for Astro2020 Decadal Survey. 8 pages, 2
figure
Multiscale Bone Remodelling with Spatial P Systems
Many biological phenomena are inherently multiscale, i.e. they are
characterized by interactions involving different spatial and temporal scales
simultaneously. Though several approaches have been proposed to provide
"multilayer" models, only Complex Automata, derived from Cellular Automata,
naturally embed spatial information and realize multiscaling with
well-established inter-scale integration schemas. Spatial P systems, a variant
of P systems in which a more geometric concept of space has been added, have
several characteristics in common with Cellular Automata. We propose such a
formalism as a basis to rephrase the Complex Automata multiscaling approach
and, in this perspective, provide a 2-scale Spatial P system describing bone
remodelling. The proposed model not only results to be highly faithful and
expressive in a multiscale scenario, but also highlights the need of a deep and
formal expressiveness study involving Complex Automata, Spatial P systems and
other promising multiscale approaches, such as our shape-based one already
resulted to be highly faithful.Comment: In Proceedings MeCBIC 2010, arXiv:1011.005
Quantifying the climate impacts of albedo changes due to biofuel production: a comparison with biogeochemical effects
Lifecycle analysis is a tool widely used to evaluate the climate impact of greenhouse gas emissions attributable to the production and use of biofuels. In this paper we employ an augmented lifecycle framework that includes climate impacts from changes in surface albedo due to land use change. We consider eleven land-use change scenarios for the cultivation of biomass for middle distillate fuel production, and compare our results to previous estimates of lifecycle greenhouse gas emissions for the same set of land-use change scenarios in terms of CO2e per unit of fuel energy. We find that two of the land-use change scenarios considered demonstrate a warming effect due to changes in surface albedo, compared to conventional fuel, the largest of which is for replacement of desert land with salicornia cultivation. This corresponds to 222 gCO2e/MJ, equivalent to 3890% and 247% of the lifecycle GHG emissions of fuels derived from salicornia and crude oil, respectively. Nine of the land-use change scenarios considered demonstrate a cooling effect, the largest of which is for the replacement of tropical rainforests with soybean cultivation. This corresponds to − 161 gCO2e/MJ, or − 28% and − 178% of the lifecycle greenhouse gas emissions of fuels derived from soybean and crude oil, respectively. These results indicate that changes in surface albedo have the potential to dominate the climate impact of biofuels, and we conclude that accounting for changes in surface albedo is necessary for a complete assessment of the aggregate climate impacts of biofuel production and use.Federal Aviation AdministrationUnited States. Air Force Research LaboratoryUnited States. Defense Logistics Agency (DLA Energy, Project 47 of the Partnership for Air Transportation Noise and Emissions Reduction (PARTNER)
Spin-Glass Model for Inverse Freezing
We analyze the Blume-Emery-Griffiths model with disordered magnetic
interaction displaying the inverse freezing phenomenon. The behaviour of this
spin-1 model in crystal field is studied throughout the phase diagram and the
transition and spinodal lines for the model are computed using the Full Replica
Symmetry Breaking Ansatz that always yelds a thermodynamically stable phase. We
compare the results both with the quenched disordered model with Ising spins on
lattice gas - where no reentrance takes place - and with the model with
generalized spin variables recently introduced by Schupper and Shnerb [Phys.
Rev. Lett. 93, 037202 (2004)]. The simplest version of all these models, known
as Ghatak-Sherrington model, turns out to hold all the general features
characterizing an inverse transition to an amorphous phase, including the right
thermodynamic behavior.Comment: 6 pages, 4 figures, to appear in the Proceeding for the X
International Workshop on Disordered Systems (2006), Molveno, Ital
Reconstruction of Quasi-Local Numerical Effective Models from Low-Resolution Measurements
We consider the inverse problem of reconstructing an effective model for a prototypical diffusion process in strongly heterogeneous media based on coarse measurements. The approach is motivated by quasi-local numerical effective forward models that are provably reliable beyond periodicity assumptions and scale separation. The goal of this work is to show that an identification of the matrix representation related to these effective models is possible. On the one hand, this provides a reasonable surrogate in cases where a direct reconstruction is unfeasible due to a mismatch between the coarse data scale and the microscopic quantities to be reconstructed. On the other hand, the approach allows us to investigate the requirement for a certain non-locality in the context of numerical homogenization. Algorithmic aspects of the inversion procedure and its performance are illustrated in a series of numerical experiments. © 2020, The Author(s)
Ectonucleoside triphosphate diphosphohydrolase-1/CD39 affects the response to ADP of female rat platelets
There is evidence that an imbalance of extracellular purine levels may be associated with increased cardiovascular risk. Platelets play a pivotal role in vascular homeostasis and thrombosis and are important source of purine nucleotides and nucleosides. Hydrolysis of nucleotides ATP and ADP is regulated by two ectonucleotidases, triphosphate diphosphohydrolase-1 (NTPDase-1/CD39) and ecto-5’-nucleotidase (ecto-5’-NT/CD73). CD39 enzyme is expressed on the endothelium, circulating blood cells, and smooth muscle cells; there is evidence that changes in CD39 expression and activity affects the potential thrombogenic of a tissue. Gender difference in the cardiovascular risk has been extensively observed; however, while the age-dependent difference in the prevalence of cardiovascular events between men and women has been attributed to the loss of the protective effect of estrogens in the postmenopausal period, the physiological mechanism behind gender disparity is still unclear. Here, we evaluated comparatively male and female rat platelet reactivity and considered the possible role of CD39 at the basis of difference observed. We found a reduced in vitro response to ADP (1–30 µM) of female compared to male platelets, associated to increased platelet CD39 expression and activity. Platelet response to ADP was strongly increased by incubation (10 min) with the CD39 inhibitor, ARL67156 (100 µM), while male platelet response was unaffected. Rat treatment with clopidogrel (30 mg/kg, per os) inhibited ex vivo platelet aggregation. Bleeding time was prolonged in female compared to male. Taken together, our results suggest that platelet ATPase and ADPase activity might be a reliable predictor of platelet reactivity
An anatomy-based lumped parameter model of cerebrospinal venous circulation: can an extracranial anatomical change impact intracranial hemodynamics?
Background
The relationship between extracranial venous system abnormalities and central nervous system disorders has been recently theorized. In this paper we delve into this hypothesis by modeling the venous drainage in brain and spinal column areas and simulating the intracranial flow changes due to extracranial morphological stenoses.
Methods
A lumped parameter model of the cerebro-spinal venous drainage was created based on anatomical knowledge and vessels diameters and lengths taken from literature. Each vein was modeled as a hydraulic resistance, calculated through Poiseuille’s law. The inputs of the model were arterial flow rates of the intracranial, vertebral and lumbar districts. The effects of the obstruction of the main venous outflows were simulated. A database comprising 112 Multiple Sclerosis patients (Male/Female = 42/70; median age ± standard deviation = 43.7 ± 10.5 years) was retrospectively analyzed.
Results
The flow rate of the main veins estimated with the model was similar to the measures of 21 healthy controls (Male/Female = 10/11; mean age ± standard deviation = 31 ± 11 years), obtained with a 1.5 T Magnetic Resonance scanner. The intracranial reflux topography predicted with the model in cases of internal jugular vein diameter reduction was similar to those observed in the patients with internal jugular vein obstacles.
Conclusions
The proposed model can predict physiological and pathological behaviors with good fidelity. Despite the simplifications introduced in cerebrospinal venous circulation modeling, the key anatomical feature of the lumped parameter model allowed for a detailed analysis of the consequences of extracranial venous impairments on intracranial pressure and hemodynamics
Keck and Gemini spectral characterization of Lucy mission fly-by target (152830) Dinkinesh
Recently, the inner main belt asteroid (152830) Dinkinesh was identified as
an additional fly-by target for the Lucy mission. The heliocentric orbit and
approximate absolute magnitude of Dinkinesh are known, but little additional
information was available prior to its selection as a target. In particular,
the lack of color spectrophotometry or spectra made it impossible to assign a
spectral type to Dinkinesh from which its albedo could be estimated. We set out
to remedy this knowledge gap by obtaining visible wavelength spectra with the
Keck telescope on 2022 November 23 and with Gemini-South on 2022 December 27.
The spectra measured with the Keck I/Low Resolution Imaging Spectrometer (LRIS)
and the Gemini South/Gemini Multi-Object Spectrograph South (GMOS-S) are most
similar to the average spectrum of S- and Sq-type asteroids. The most
diagnostic feature is the 151 silicate absorption feature at
0.9-1.0~micron. Small S- and Sq-type asteroids have moderately high
albedos ranging from 0.17-0.35. Using this albedo range for Dinkinesh in
combination with measured absolute magnitude, it is possible to derive an
effective diameter and surface brightness for this body. The albedo, size and
surface brightness are important inputs required for planning a successful
encounter by the Lucy spacecraft.Comment: 7 pages, 1 figure. Under review in Icaru
Chromosome microarray analysis as first-line test in pregnancies with a priori low risk for detection of submicroscopic chromosomal abnormalities
n this study, we aimed to explore the utility of chromosomal microarray analysis (CMA) in groups of pregnancies with a priori low risk for detection of submicroscopic chromosome abnormalities, usually not considered an indication for testing, in order to assess whether CMA improves the detection rate of prenatal chromosomal aberrations. A total of 3000 prenatal samples were processed in parallel using both whole-genome CMA and conventional karyotyping. The indications for prenatal testing included: advanced maternal age, maternal serum screening test abnormality, abnormal ultrasound findings, known abnormal fetal karyotype, parental anxiety, family history of a genetic condition and cell culture failure. The use of CMA resulted in an increased detection rate regardless of the indication for analysis. This was evident in high risk groups (abnormal ultrasound findings and abnormal fetal karyotype), in which the percentage of detection was 5.8% (7/120), and also in low risk groups, such as advanced maternal age (6/1118, 0.5%), and parental anxiety (11/1674, 0.7%). A total of 24 (0.8%) fetal conditions would have remained undiagnosed if only a standard karyotype had been performed. Importantly, 17 (0.6%) of such findings would have otherwise been overlooked if CMA was offered only to high risk pregnancies.The results of this study suggest that more widespread CMA testing of fetuses would result in a higher detection of clinically relevant chromosome abnormalities, even in low risk pregnancies. Our findings provide substantial evidence for the introduction of CMA as a first-line diagnostic test for all pregnant women undergoing invasive prenatal testing, regardless of risk factors
- …
