1,965 research outputs found

    Study of RPC gas mixtures for the ARGO-YBJ experiment

    Get PDF
    The ARGO-YBJ experiment consists of a RPC carpet to be operated at the Yangbajing laboratory (Tibet, P.R. China), 4300 m a.s.l., and devoted to the detection of showers initiated by photon primaries in the energy range 100 GeV - 20 TeV. The measurement technique, namely the timing on the shower front with a few tens of particles, requires RPC operation with 1 ns time resolution, low strip multiplicity, high efficiency and low single counting rate. We have tested RPCs with many gas mixtures, at sea level, in order to optimize these parameters. The results of this study are reported.Comment: 6 pages, 3 figures. To be published in Nucl. Instr. Meth. A, talk given at the "5th International Workshop on RPCs and Related Detectors", Bari (Italy) 199

    The gravity of magnetic stresses and energy

    Full text link
    In the framework of designing laboratory tests of relativistic gravity, we investigate the gravitational field produced by the magnetic field of a solenoid. Observing this field might provide a mean of testing whether stresses gravitate as predicted by Einstein's theory. A previous study of this problem by Braginsky, Caves and Thorne predicted that the contribution to the gravitational field resulting from the stresses of the magnetic field and of the solenoid walls would cancel the gravitational field produced by the mass-energy of the magnetic field, resulting in a null magnetically-generated gravitational force outside the solenoid. They claim that this null result, once proved experimentally, would demonstrate the stress contribution to gravity. We show that this result is incorrect, as it arises from an incomplete analysis of the stresses, which neglects the axial stresses in the walls. Once the stresses are properly evaluated, we find that the gravitational field outside a long solenoid is in fact independent of Maxwell and material stresses, and it coincides with the newtonian field produced by the linear mass distribution equivalent to the density of magnetic energy stored in a unit length of the solenoid. We argue that the gravity of Maxwell stress can be directly measured in the vacuum region inside the solenoid, where the newtonian noise is absent in principle, and the gravity generated by Maxwell stresses is not screened by the negative gravity of magnetic-induced stresses in the solenoid walls.Comment: 10 pages, final version accepted for publication in PR

    The Aladin2 experiment: sensitivity study

    Get PDF
    Aladin2 is an experiment devoted to the first measurement of variations of Casimir energy in a rigid body. The main short-term scientific motivation relies on the possibility of the first demonstration of a phase transition influenced by vacuum fluctuations while, in the long term and in the mainframe of the cosmological constant problem, it can be regarded as the first step towards a measurement of the weight of vacuum energy. In this paper, after a presentation of the guiding principle of the measurement, the experimental apparatus and sensitivity studies on final cavities will be presented

    Dynamical Casimir Effect with Semi-Transparent Mirrors, and Cosmology

    Full text link
    After reviewing some essential features of the Casimir effect and, specifically, of its regularization by zeta function and Hadamard methods, we consider the dynamical Casimir effect (or Fulling-Davis theory), where related regularization problems appear, with a view to an experimental verification of this theory. We finish with a discussion of the possible contribution of vacuum fluctuations to dark energy, in a Casimir like fashion, that might involve the dynamical version.Comment: 11 pages, Talk given in the Workshop ``Quantum Field Theory under the Influence of External Conditions (QFEXT07)'', Leipzig (Germany), September 17 - 21, 200

    Positron localization effects on the Doppler broadening of the annihilation line: Aluminum as a case study

    Get PDF
    The coincidence Doppler broadening (CDB) technique is widely used to measure one-dimensional momentum distributions of annihilation photons, with the aim of obtaining information on the chemical environment of open-volume defects. However, the quantitative analysis of CDB spectra needs to include also purely geometrical effects. A demonstration is given here, on the basis of CDB spectra measured in quenched and in deformed pure aluminum. The comparison of the experimental results with ab initio computations shows that the observed differences come from the difference in free volume seen by positrons trapped in quenched-in vacancies or in vacancylike defects associated to dislocations. The computation reproduces accurately all details of CDB spectra, including the peak near the Fermi break, which is due to the zero-point motion of the confined positron.Peer reviewe

    Probing For New Physics and Detecting non linear vacuum QED effects using gravitational wave interferometer antennas

    Get PDF
    Low energy non linear QED effects in vacuum have been predicted since 1936 and have been subject of research for many decades. Two main schemes have been proposed for such a 'first' detection: measurements of ellipticity acquired by a linearly polarized beam of light passing through a magnetic field and direct light-light scattering. The study of the propagation of light through an external field can also be used to probe for new physics such as the existence of axion-like particles and millicharged particles. Their existence in nature would cause the index of refraction of vacuum to be different from unity in the presence of an external field and dependent of the polarization direction of the light propagating. The major achievement of reaching the project sensitivities in gravitational wave interferometers such as LIGO an VIRGO has opened the possibility of using such instruments for the detection of QED corrections in electrodynamics and for probing new physics at very low energies. In this paper we discuss the difference between direct birefringence measurements and index of refraction measurements. We propose an almost parasitic implementation of an external magnetic field along the arms of the VIRGO interferometer and discuss the advantage of this choice in comparison to a previously proposed configuration based on shorter prototype interferometers which we believe is inadequate. Considering the design sensitivity in the strain, for the near future VIRGO+ interferometer, of h<210231Hzh<2\cdot10^{-23} \frac{1}{\sqrt{\rm Hz}} in the range 40 Hz 400- 400 Hz leads to a variable dipole magnet configuration at a frequency above 20 Hz such that B2D13000B^{2}D \ge 13000 T2^{2}m/Hz\sqrt{\rm Hz} for a `first' vacuum non linear QED detection

    Observation of Mixed Valence Ru Components in Zn Doped Y2Ru2O7 Pyrochlores

    Get PDF
    We present a study of Y2 12xZnxRu2O7 pyrochlores as a function of the Zn doping level x. X-ray diffraction measurements show that single-phase samples could be obtained for x < 0.2. Within the allowed range for x, dc conductivity measurements revealed a sizable decrease in resistivity at all the investigated temperatures for Zn doped samples with respect to undoped ones. Neutron diffraction data of the x = 0.2 sample showed that replacing Y3+ by Zn2+ does not result in the formation of oxygen vacancies. X-ray photoemission spectroscopy measurements revealed that part of the Ru ions are in the 5+ oxidation state to balance, in terms of electronic charge, the incorporation of Zn2+. The results give experimental evidence that the heterovalent doping promotes the increase of conductivity in the Y2Ru2O7 pyrochlores, making these systems promising as intermediate temperature solid oxide fuel cell cathodes

    Sensitivity Studies for Third-Generation Gravitational Wave Observatories

    Full text link
    Advanced gravitational wave detectors, currently under construction, are expected to directly observe gravitational wave signals of astrophysical origin. The Einstein Telescope, a third-generation gravitational wave detector, has been proposed in order to fully open up the emerging field of gravitational wave astronomy. In this article we describe sensitivity models for the Einstein Telescope and investigate potential limits imposed by fundamental noise sources. A special focus is set on evaluating the frequency band below 10Hz where a complex mixture of seismic, gravity gradient, suspension thermal and radiation pressure noise dominates. We develop the most accurate sensitivity model, referred to as ET-D, for a third-generation detector so far, including the most relevant fundamental noise contributions.Comment: 13 pages, 7 picture

    Astrophysically Triggered Searches for Gravitational Waves: Status and Prospects

    Get PDF
    In gravitational-wave detection, special emphasis is put onto searches that focus on cosmic events detected by other types of astrophysical observatories. The astrophysical triggers, e.g. from gamma-ray and X-ray satellites, optical telescopes and neutrino observatories, provide a trigger time for analyzing gravitational wave data coincident with the event. In certain cases the expected frequency range, source energetics, directional and progenitor information is also available. Beyond allowing the recognition of gravitational waveforms with amplitudes closer to the noise floor of the detector, these triggered searches should also lead to rich science results even before the onset of Advanced LIGO. In this paper we provide a broad review of LIGO's astrophysically triggered searches and the sources they target

    Reconstruction of the gravitational wave signal h(t)h(t) during the Virgo science runs and independent validation with a photon calibrator

    Full text link
    The Virgo detector is a kilometer-scale interferometer for gravitational wave detection located near Pisa (Italy). About 13 months of data were accumulated during four science runs (VSR1, VSR2, VSR3 and VSR4) between May 2007 and September 2011, with increasing sensitivity. In this paper, the method used to reconstruct, in the range 10 Hz-10 kHz, the gravitational wave strain time series h(t)h(t) from the detector signals is described. The standard consistency checks of the reconstruction are discussed and used to estimate the systematic uncertainties of the h(t)h(t) signal as a function of frequency. Finally, an independent setup, the photon calibrator, is described and used to validate the reconstructed h(t)h(t) signal and the associated uncertainties. The uncertainties of the h(t)h(t) time series are estimated to be 8% in amplitude. The uncertainty of the phase of h(t)h(t) is 50 mrad at 10 Hz with a frequency dependence following a delay of 8 μ\mus at high frequency. A bias lower than 4μs4\,\mathrm{\mu s} and depending on the sky direction of the GW is also present.Comment: 35 pages, 16 figures. Accepted by CQ
    corecore