1,571 research outputs found
Propagation and Ghosts in the Classical Kagome Antiferromagnet
We investigate the classical spin dynamics of the kagome antiferromagnet by
combining Monte Carlo and spin dynamics simulations. We show that this model
has two distinct low temperature dynamical regimes, both sustaining propagative
modes. The expected gauge invariance type of the low energy low temperature out
of plane excitations is also evidenced in the non linear regime. A detailed
analysis of the excitations allows to identify ghosts in the dynamical
structure factor, i.e propagating excitations with a strongly reduced spectral
weight. We argue that these dynamical extinction rules are of geometrical
origin.Comment: 4+ pages, 4 figures. Accepted for publication in the Physical Review
Letter
Classical heisenberg antiferromagnet away from the pyrochlore lattice limit: entropic versus energetic selection
The stability of the disordered ground state of the classical Heisenberg
pyrochlore antiferromagnet is studied within extensive Monte Carlo simulations
by introducing an additional exchange interaction that interpolates
between the pyrochlore lattice () and the face-centered cubic lattice
(). It is found that for as low as , the system is
long range ordered : the disordered ground state of the pyrochlore
antiferromagnet is unstable when introducing very small deviations from the
pure limit. Furthermore, it is found that the selected phase is a
collinear state energetically greater than the incommensurate phase suggested
by a mean field analysis. To our knowledge this is the first example where
entropic selection prevails over the energetic one.Comment: 5 (two-column revtex4) pages, 1 table, 7 ps/eps figures. Submitted to
Phys. Rev.
XY checkerboard antiferromagnet in external field
Ordering by thermal fluctuations is studied for the classical XY
antiferromagnet on a checkerboard lattice in zero and finite magnetic fields by
means of analytical and Monte Carlo methods. The model exhibits a variety of
novel broken symmetries including states with nematic ordering in zero field
and with triatic order parameter at high fields.Comment: 6 page
Observation of magnetic fragmentation in spin ice
Fractionalised excitations that emerge from a many body system have revealed
rich physics and concepts, from composite fermions in two-dimensional electron
systems, revealed through the fractional quantum Hall effect, to spinons in
antiferromagnetic chains and, more recently, fractionalisation of Dirac
electrons in graphene and magnetic monopoles in spin ice. Even more surprising
is the fragmentation of the degrees of freedom themselves, leading to
coexisting and a priori independent ground states. This puzzling phenomenon was
recently put forward in the context of spin ice, in which the magnetic moment
field can fragment, resulting in a dual ground state consisting of a
fluctuating spin liquid, a so-called Coulomb phase, on top of a magnetic
monopole crystal. Here we show, by means of neutron scattering measurements,
that such fragmentation occurs in the spin ice candidate NdZrO. We
observe the spectacular coexistence of an antiferromagnetic order induced by
the monopole crystallisation and a fluctuating state with ferromagnetic
correlations. Experimentally, this fragmentation manifests itself via the
superposition of magnetic Bragg peaks, characteristic of the ordered phase, and
a pinch point pattern, characteristic of the Coulomb phase. These results
highlight the relevance of the fragmentation concept to describe the physics of
systems that are simultaneously ordered and fluctuating.Comment: accepted in Nature Physic
Dynamically-Induced Frustration as a Route to a Quantum Spin Ice State in Tb2Ti2O7 via Virtual Crystal Field Excitations and Quantum Many-Body Effects
The TbTiO pyrochlore magnetic material is attracting much
attention for its {\em spin liquid} state, failing to develop long range order
down to 50 mK despite a Curie-Weiss temperature K.
In this paper we reinvestigate the theoretical description of this material by
considering a quantum model of independent tetrahedra to describe its low
temperature properties. The naturally-tuned proximity of this system near a
N\'eel to spin ice phase boundary allows for a resurgence of quantum
fluctuation effects that lead to an important renormalization of its effective
low energy spin Hamiltonian. As a result, TbTiO is argued to be a
{\em quantum spin ice}. We put forward an experimental test of this proposal
using neutron scattering on a single crystal.Comment: 5 pages, 3 figures. Version 2 has a modified introduction. Figure 2b
of version 1 (experimental neutron scattering has been removed. A proposal
for an experimental test is now included accompanied by a new Figure (Fig. 3
Genesis of self-organized zebra textures in burial dolomites: Displacive veins, induced stress, and dolomitization
The dolomite veins making up rhythmites common in burial dolomites are not cement infillings of supposed cavities, as in the prevailing view, but are instead displacive veins, veins that pushed aside the host dolostone as they grew. Evidence that the veins are displacive includes a) small transform-fault-like displacements that could not have taken place if the veins were passive cements, and b) stylolites in host rock that formed as the veins grew in order to compensate for the volume added by the veins. Each zebra vein consists of crystals that grow inward from both sides, and displaces its walls via the local induced stress generated by the crystal growth itself. The petrographic criterion used in recent literature to interpret zebra veins in dolomites as cements - namely, that euhedral crystals can grow only in a prior void - disregards evidence to the contrary. The idea that flat voids did form in dolostones is incompatible with the observed optical continuity between the saddle dolomite euhedra of a vein and the replacive dolomite crystals of the host. The induced stress is also the key to the self-organization of zebra veins: In a set of many incipient, randomly-spaced, parallel veins just starting to grow in a host dolostone, each vein¿s induced stress prevents too-close neighbor veins from nucleating, or redissolves them by pressure-solution. The veins that survive this triage are those just outside their neighbors¿s induced stress haloes, now forming a set of equidistant veins, as observed
Classical generalized constant coupling model for geometrically frustrated antiferromagnets
A generalized constant coupling approximation for classical geometrically
frustrated antiferromagnets is presented. Starting from a frustrated unit we
introduce the interactions with the surrounding units in terms of an internal
effective field which is fixed by a self consistency condition. Results for the
magnetic susceptibility and specific heat are compared with Monte Carlo data
for the classical Heisenberg model for the pyrochlore and kagome lattices. The
predictions for the susceptibility are found to be essentially exact, and the
corresponding predictions for the specific heat are found to be in very good
agreement with the Monte Carlo results.Comment: 4 pages, 3 figures, 2 columns. Discussion about the zero T value of
the pyrochlore specific heat correcte
Hierarchical geometric frustration in La3Cu2VO9
The crystallographic structure and magnetic properties of the La3Cu2VO9 were
investigated by powder neutron diffraction and magnetization measurements. The
compound materializes geometric frustration at two spatial scales, within
clusters and between clusters, and at different temperature scales. It is shown
by exactly solving the hamiltonian spectrum that collective spins are formed on
each clusters at low temperature before inter-clusters coupling operates.Comment: 6 pages, 4 figures. HFM2006 proceeding pape
Artificial Kagome Arrays of Nanomagnets: A Frozen Dipolar Spin Ice
Magnetic frustration effects in artificial kagome arrays of nanomagnets are
investigated using x-ray photoemission electron microscopy and Monte Carlo
simulations. Spin configurations of demagnetized networks reveal unambiguous
signatures of long range, dipolar interaction between the nanomagnets. As soon
as the system enters the spin ice manifold, the kagome dipolar spin ice model
captures the observed physics, while the short range kagome spin ice model
fails.Comment: 4 pages, 4 figures, 1 tabl
- …
