911 research outputs found

    Propagation of Chaos for a Thermostated Kinetic Model

    Full text link
    We consider a system of N point particles moving on a d-dimensional torus. Each particle is subject to a uniform field E and random speed conserving collisions. This model is a variant of the Drude-Lorentz model of electrical conduction. In order to avoid heating by the external field, the particles also interact with a Gaussian thermostat which keeps the total kinetic energy of the system constant. The thermostat induces a mean-field type of interaction between the particles. Here we prove that, starting from a product measure, in the large N limit, the one particle velocity distribution satisfies a self consistent Vlasov-Boltzmann equation.. This is a consequence of "propagation of chaos", which we also prove for this model.Comment: This version adds affiliation and grant information; otherwise it is unchange

    Beyond the standard entropic inequalities: stronger scalar separability criteria and their applications

    Get PDF
    Recently it was shown that if a given state fulfils the reduction criterion it must also satisfy the known entropic inequalities. Now the questions arises whether on the assumption that stronger criteria based on positive but not completely positive maps are satisfied, it is possible to derive some scalar inequalities stronger than the entropic ones. In this paper we show that under some assumptions the extended reduction criterion [H.-P. Breuer, Phys. Rev. Lett 97, 080501 (2006); W. Hall, J. Phys. A 40, 6183 (2007)] leads to some entropic--like inequalities which are much stronger than their entropic counterparts. The comparison of the derived inequalities with other separability criteria shows that such approach might lead to strong scalar criteria detecting both distillable and bound entanglement. In particular, in the case of SO(3)-invariant states it is shown that the present inequalities detect entanglement in regions in which entanglement witnesses based on extended reduction map fail. It should be also emphasized that in the case of 2N2\otimes N states the derived inequalities detect entanglement efficiently, while the extended reduction maps are useless when acting on the qubit subsystem. Moreover, there is a natural way to construct a many-copy entanglement witnesses based on the derived inequalities so, in principle, there is a possibility of experimental realization. Some open problems and possibilities for further studies are outlined.Comment: 15 Pages, RevTex, 7 figures, some new results were added, few references changed, typos correcte

    Kinetics of a Model Weakly Ionized Plasma in the Presence of Multiple Equilibria

    Get PDF
    We study, globaly in time, the velocity distribution f(v,t)f(v,t) of a spatially homogeneous system that models a system of electrons in a weakly ionized plasma, subjected to a constant external electric field EE. The density ff satisfies a Boltzmann type kinetic equation containing a full nonlinear electron-electron collision term as well as linear terms representing collisions with reservoir particles having a specified Maxwellian distribution. We show that when the constant in front of the nonlinear collision kernel, thought of as a scaling parameter, is sufficiently strong, then the L1L^1 distance between ff and a certain time dependent Maxwellian stays small uniformly in tt. Moreover, the mean and variance of this time dependent Maxwellian satisfy a coupled set of nonlinear ODE's that constitute the ``hydrodynamical'' equations for this kinetic system. This remain true even when these ODE's have non-unique equilibria, thus proving the existence of multiple stabe stationary solutions for the full kinetic model. Our approach relies on scale independent estimates for the kinetic equation, and entropy production estimates. The novel aspects of this approach may be useful in other problems concerning the relation between the kinetic and hydrodynamic scales globably in time.Comment: 30 pages, in TeX, to appear in Archive for Rational Mechanics and Analysis: author's email addresses: [email protected], [email protected], [email protected], [email protected], [email protected]

    Kinetic hierarchy and propagation of chaos in biological swarm models

    Get PDF
    We consider two models of biological swarm behavior. In these models, pairs of particles interact to adjust their velocities one to each other. In the first process, called 'BDG', they join their average velocity up to some noise. In the second process, called 'CL', one of the two particles tries to join the other one's velocity. This paper establishes the master equations and BBGKY hierarchies of these two processes. It investigates the infinite particle limit of the hierarchies at large time-scale. It shows that the resulting kinetic hierarchy for the CL process does not satisfy propagation of chaos. Numerical simulations indicate that the BDG process has similar behavior to the CL process

    On Strong Convergence to Equilibrium for the Boltzmann Equation with Soft Potentials

    Full text link
    The paper concerns L1L^1- convergence to equilibrium for weak solutions of the spatially homogeneous Boltzmann Equation for soft potentials (-4\le \gm<0), with and without angular cutoff. We prove the time-averaged L1L^1-convergence to equilibrium for all weak solutions whose initial data have finite entropy and finite moments up to order greater than 2+|\gm|. For the usual L1L^1-convergence we prove that the convergence rate can be controlled from below by the initial energy tails, and hence, for initial data with long energy tails, the convergence can be arbitrarily slow. We also show that under the integrable angular cutoff on the collision kernel with -1\le \gm<0, there are algebraic upper and lower bounds on the rate of L1L^1-convergence to equilibrium. Our methods of proof are based on entropy inequalities and moment estimates.Comment: This version contains a strengthened theorem 3, on rate of convergence, considerably relaxing the hypotheses on the initial data, and introducing a new method for avoiding use of poitwise lower bounds in applications of entropy production to convergence problem

    Celebrating Cercignani's conjecture for the Boltzmann equation

    Full text link
    Cercignani's conjecture assumes a linear inequality between the entropy and entropy production functionals for Boltzmann's nonlinear integral operator in rarefied gas dynamics. Related to the field of logarithmic Sobolev inequalities and spectral gap inequalities, this issue has been at the core of the renewal of the mathematical theory of convergence to thermodynamical equilibrium for rarefied gases over the past decade. In this review paper, we survey the various positive and negative results which were obtained since the conjecture was proposed in the 1980s.Comment: This paper is dedicated to the memory of the late Carlo Cercignani, powerful mind and great scientist, one of the founders of the modern theory of the Boltzmann equation. 24 pages. V2: correction of some typos and one ref. adde

    Heat Kernel Bounds for the Laplacian on Metric Graphs of Polygonal Tilings

    Full text link
    We obtain an upper heat kernel bound for the Laplacian on metric graphs arising as one skeletons of certain polygonal tilings of the plane, which reflects the one dimensional as well as the two dimensional nature of these graphs.Comment: 8 page

    On the stochastic mechanics of the free relativistic particle

    Full text link
    Given a positive energy solution of the Klein-Gordon equation, the motion of the free, spinless, relativistic particle is described in a fixed Lorentz frame by a Markov diffusion process with non-constant diffusion coefficient. Proper time is an increasing stochastic process and we derive a probabilistic generalization of the equation (dτ)2=1c2dXνdXν(d\tau)^2=-\frac{1}{c^2}dX_{\nu}dX_{\nu}. A random time-change transformation provides the bridge between the tt and the τ\tau domain. In the τ\tau domain, we obtain an \M^4-valued Markov process with singular and constant diffusion coefficient. The square modulus of the Klein-Gordon solution is an invariant, non integrable density for this Markov process. It satisfies a relativistically covariant continuity equation
    corecore