4,689 research outputs found

    Old open clusters in the outer Galactic disk

    Full text link
    The outer parts of the Milky Way disk are believed to be one of the main arenas where the accretion of external material in the form of dwarf galaxies and subsequent formation of streams is taking place. The Monoceros stream and the Canis Major and Argo over-densities are notorious examples. VLT high resolution spectra have been acquired for five distant open clusters. We derive accurate radial velocities to distinguish field interlopers and cluster members. For the latter we perform a detailed abundance analysis and derive the iron abundance [Fe/H] and the abundance ratios of several α\alpha elements. Our analysis confirms previous indications that the radial abundance gradient in the outer Galactic disk does not follow the expectations extrapolated from the solar vicinity, but exhibits a shallower slope. By combining the metallicity of the five program clusters with eight more clusters for which high resolution spectroscopy is available, we find that the mean metallicity in the outer disk between 12 and 21 kpc from the Galactic center is [Fe/H] 0.35\approx -0.35, with only marginal indications for a radial variation. In addition, all the program clusters exhibit solar scaled or slightly enhanced α\alpha elements, similar to open clusters in the solar vicinity and thin disk stars. We investigate whether this outer disk cluster sample might belong to an extra-galactic population, like the Monoceros ring. However, close scrutiny of their properties - location, kinematics and chemistry - does not convincingly favor this hypothesis. On the contrary, they appear more likely genuine Galactic disk clusters. We finally stress the importance to obtain proper motion measurements for these clusters to constrain their orbits.Comment: 19 pages, 9 eps figure, in press in A&A, abstract rephrased to fit i

    Spectroscopy and BVI photometry of the young open cluster NGC 6604

    Get PDF
    BVI photometry (from South Africa Astron. Obs.), Echelle high resolution spectroscopy and AFOSC integral field spectroscopy (from Asiago, Italy) of the young open cluster NGC 6604 are presented. Age, distance, reddening, membership, radial and rotational velocities are derived and discussed. An age of 5 million years, a distance of 1.7 kpc and a reddening E(B-V)=1.02 are found. The cluster radial velocity is in agreement with the Hron (1987) model for the Galaxy disk rotation. Pre-ZAMS objects are not present down to M_V = +1.5 mag.Comment: accepted in Astron.Astrophys.Suppl. Figure 2 is degraded in resolutio

    No evidence for a dark matter disk within 4 kpc from the Galactic plane

    Full text link
    We estimated the dynamical surface mass density (Sigma) at the solar Galactocentric distance between 2 and 4 kpc from the Galactic plane, as inferred from the observed kinematics of the thick disk. We find Sigma(z=2 kpc)=57.6+-5.8 Mo pc^-2, and it shows only a tiny increase in the z-range considered by our investigation. We compared our results with the expectations for the visible mass, adopting the most recent estimates in the literature for contributions of the Galactic stellar disk and interstellar medium, and proposed models of the dark matter distribution. Our results match the expectation for the visible mass alone, never differing from it by more than 0.8 $Mo pc^-2 at any z, and thus we find little evidence for any dark component. We assume that the dark halo could be undetectable with our method, but the dark disk, recently proposed as a natural expectation of the LambdaCDM models, should be detected. Given the good agreement with the visible mass alone, models including a dark disk are less likely, but within errors its existence cannot be excluded. In any case, these results put constraints on its properties: thinner models (scale height lower than 4 kpc) reconcile better with our results and, for any scale height, the lower-density models are preferred. We believe that successfully predicting the stellar thick disk properties and a dark disk in agreement with our observations could be a challenging theoretical task.Comment: Accepted for publication in ApJ Letter

    Stellar populations in the Carina region: The Galactic plane at l = 291

    Get PDF
    Previous studies of the Carina region have revealed its complexity and richness as well as a significant number of early-type stars. In many cases, these studies only concentrated on the central region or were not homogeneous. This latter aspect, in particular, is crucial because very different ages and distances for key clusters have been claimed in recent years. The aim of this work is to study in detail an area of the Galactic plane in Carina. We analyze the properties of different stellar populations and focus on a sample of open clusters and their population of YSOs and highly reddened early stars. We also studied the stellar mass distribution in these clusters and the possible scenario of their formation. Finally, we outline the Galactic spiral structure in this direction. We obtained photometric data for six young open clusters located in Carina at l = 291, and their adjacent stellar fields, which we complemented with spectroscopic observations of a few selected targets. We also culled additional information from the literature. Our results provide more reliable estimates of distances, color excesses, masses, and ages of the stellar populations in this direction. We estimate the basic parameters of the studied clusters and find that they identify two overdensities of young stellar populations. We find evidence of PMS populations inside them, with an apparent coeval stellar formation in the most conspicuous clusters. We also discuss apparent age and distance gradients in the direction NW-SE. We study the mass distributions of several clusters in the region. They consistently show a canonical IMF slope. We discover and characterise an abnormally reddened massive stellar population. Spectroscopic observations of ten stars of this latter population show that all selected targets were massive OB stars. Their location is consistent with the position of the Car-Sag spiral arm.Comment: 15 pages, 13 figure

    Blue Straggler Stars in Galactic Open Clusters and the effect of field star contamination

    Get PDF
    We investigate the distribution of Blue Straggler stars in the field of three open star clusters. The main purpose is to highlight the crucial role played by general Galactic disk fore-/back-ground field stars, which are often located in the same region of the Color Magnitude Diagram as Blue Straggler stars. We analyze photometry taken from the literature of 3 open clusters of intermediate/old age rich in Blue Straggler stars, and which are projected in the direction of the Perseus arm, and study their spatial distribution and the Color Magnitude Diagram. As expected, we find that a large portion of the Blue Straggler population in these clusters are simply young field stars belonging to the spiral arm. This result has important consequences on the theories of the formation and statistics of Blue Straggler stars in different population environments: open clusters, globular clusters or dwarf galaxies. As previously emphasized by many authors, a detailed membership analysis is mandatory before comparing the Blue Straggler population in star clusters against theoretical models. Moreover, these sequences of young field stars (blue plumes) are potentially powerful tracers of Galactic structure which require further consideration.Comment: 11 pages, 4 figurs, in press as Research Note in A&

    Extended star formation history of the star cluster NGC 2154 in the Large Magellanic Cloud

    Get PDF
    The colour-magnitude diagram (CMD) of the intermediate-age Large Magellanic Cloud star cluster NGC 2154 and its adjacent field has been analysed using Padova stellar models to determine the cluster´s fundamental parameters and its star formation history. Deep BR CCD photometry, together with synthetic CMDs and integrated luminosity functions, has allowed us to infer that the cluster experienced an extended star formation period of about 1.2 Gyr, which began approximately 2.3 Gyr ago and ended 1.1 Gyr ago. However, the physical reality of such a prolonged period of star formation is questionable, and could be the result of inadequacies in the stellar evolutionary tracks themselves. A substantial fraction of binaries (70 per cent) seems to exist in NGC 2154.Fil: Baume, Gustavo Luis. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Astrofísica La Plata. Universidad Nacional de La Plata. Facultad de Ciencias Astronómicas y Geofísicas. Instituto de Astrofísica La Plata; ArgentinaFil: Carraro, Giovanni. Università di Padova; ItaliaFil: Costa, E.. Universidad de Chile; ChileFil: Mendez, R. A.. Universidad de Chile; ChileFil: Girardi, L.. Osservatorio Astronomico di Padova; Itali

    Metal abundances in extremely distant Galactic old open clusters. II. Berkeley 22 and Berkeley 66

    Full text link
    We report on high resolution spectroscopy of four giant stars in the Galactic old open clusters Berkeley~22 and Berkeley~66 obtained with HIRES at the Keck telescope. We find that [Fe/H]=0.32±0.19[Fe/H]=-0.32\pm0.19 and [Fe/H]=0.48±0.24[Fe/H]=-0.48\pm0.24 for Berkeley~22 and Berkeley~66, respectively. Based on these data, we first revise the fundamental parameters of the clusters, and then discuss them in the context of the Galactic disk radial abundance gradient. We found that both clusters nicely obey the most updated estimate of the slope of the gradient from \citet{fri02} and are genuine Galactic disk objects.Comment: 20 pages, 6 eps figures, accepted for publication in the Astronomical Journa

    No evidence of dark matter in the solar neighborhood

    Full text link
    We measured the surface mass density of the Galactic disk at the solar position, up to 4 kpc from the plane,by means of the kinematics of ~400 thick disk stars. The results match the expectations for the visible mass only, and no dark matter is detected in the volume under analysis. The current models of dark matter halo are excluded with a significance higher than 5sigma, unless a highly prolate halo is assumed, very atypical in cold dark matter simulations. The resulting lack of dark matter at the solar position challenges the current models.Comment: Proceeding of the first binational Sochias-AAA meeting, held in San Juan, Argentin
    corecore