1,504 research outputs found
Does Basel compliance matter for bank performance?
The global financial crisis underscored the importance of regulation and supervision to a well-functioning banking system that efficiently channels financial resources into investment. In this paper, we contribute to the ongoing policy debate by assessing whether compliance with international regulatory standards and protocols enhances bank operating efficiency. We focus specifically on the adoption of international capital standards and the Basel Core Principles for Effective Bank Supervision (BCP). The relationship between bank efficiency and regulatory compliance is investigated using the Simar and Wilson (2007. J. Econ. 136 (1), 31) double bootstrapping approach on an international sample of publicly listed banks. Our results indicate that overall BCP compliance, or indeed compliance with any of its individual chapters, has no association with bank efficiency
Exact and heuristic allocation of multi-kernel applications to multi-FPGA platforms
FPGA-based accelerators demonstrated high energy efficiency compared to GPUs and CPUs. However, single FPGA designs may not achieve sufficient task parallelism. In this work, we optimize the mapping of high-performance multi-kernel applications, like Convolutional Neural Networks, to multi-FPGA platforms. First, we formulate the system level optimization problem, choosing within a huge design space the parallelism and number of compute units for each kernel in the pipeline. Then we solve it using a combination of Geometric Programming, producing the optimum performance solution given resource and DRAM bandwidth constraints, and a heuristic allocator of the compute units on the FPGA cluster.Peer ReviewedPostprint (author's final draft
Octet Magnetic Moments with Null Instantons and Semibosonized Nambu-Jona-Lasinio Model
It is shown that the difference between the magnetic moment results in the
quark model with null instantons and semibosonized Nambu-Jona-Lasinio model
lies in the description of the magnetic moment of the -hyperon.Comment: RevTex, 6 pages, submitted to Progr.Theor.Phy
Semileptonic decays, magnetic moments and spin distributions of spin-1/2 baryons with sea contribution
Spin-1/2 baryons are considered as a composite system made out of a "core" of
three quarks surrounded by a "sea" (of gluons and -pairs) which is
specified by its total quantum numbers. Specifically, we assume this sea to be
a flavor octet with spin-0 or 1 but no color. We show our model can provide
very goods fits to magnetic moments and semileptonic decay data using
experimental errors. The predictions for spin distributions are in reasonable
agreement with experiment.Comment: To be published in Int. J. of Mod. Phys.
A Fully Differential Digital CMOS Pulse UWB Generator
A new fully-digital CMOS pulse generator for impulse-radio Ultra-Wide-Band (UWB) systems is presented. First, the shape of the pulse which best fits the FCC regulation in the 3.1-5 GHz sub-band of the entire 3.1-10.6 GHz UWB bandwidth is derived and approximated using rectangular digital pulses. In particular, the number and width of pulses that approximate an ideal template is found through an ad-hoc optimization methodology. Then a fully differential digital CMOS circuit that synthesizes the pulse sequence is conceived and its functionality demonstrated through post-layout simulations. The results show a very good agreement with the FCC requirements and a low power consumptio
Quark Orbital Angular Momentum in the Baryon
Analytical and numerical results, for the orbital and spin content carried by
different quark flavors in the baryons, are given in the chiral quark model
with symmetry breaking. The reduction of the quark spin, due to the spin
dilution in the chiral splitting processes, is transferred into the orbital
motion of quarks and antiquarks. The orbital angular momentum for each quark
flavor in the proton as a function of the partition factor and the
chiral splitting probability is shown. The cancellation between the spin
and orbital contributions in the spin sum rule and in the baryon magnetic
moments is discussed.Comment: 26 pages, 3 figures, revised version with minor eq. no and ref. no.
corrections. Discussion on the spin and a new ref. are adde
Core-shell nano-architectures: the incorporation mechanism of hydrophobic nanoparticles into the aqueous core of a microemulsion
This work presents an in-depth investigation of the molecular interactions in the incorporation mechanism of colloidal hydrophobic-capped nanoparticles into the hydrophilic core of reverse microemulsions. 1H Nuclear Magnetic Resonance (NMR) was employed to obtain molecular level details of the interaction between the nanoparticles capping amphiphiles and the microemulsion surfactants. The model system of choice involved oleic acid (OAC) and oleylamine (OAM) as capping molecules, while igepal-CO520 was the surfactant. The former were studied both in their ‘‘free’’ state and ‘‘ligated’’ one, i.e., bound to nanoparticles. The latter was investigated either in cyclohexane (micellar solution) or in water/cyclohexane microemulsions. The approach was extremely useful to gain a deeper understanding of the equilibria involved in this complex system (oleic acid capped-Bi2S3 in igepal/water/cyclohexane microemulsions). In difference to previously proposed mechanisms, the experimental data showed that the high affinity of the capping ligands for the reverse micelle interior was the driving force for the incorporation of the nanoparticles. A simple ligand-exchange mechanism could be ruled out. The collected information about the nanoparticle incorporation mechanism is extremely useful to develop new synthetic routes with an improved/tuned coating efficiency, in order to tailor the core–shell structure preparation
Cognitive Impairment and Age-Related Vision Disorders: Their Possible Relationship and the Evaluation of the Use of Aspirin and Statins in a 65 Years-and-Over Sardinian Population
Neurological disorders (Alzheimer’s disease, vascular and mixed dementia) and visual loss (cataract, age-related macular degeneration, glaucoma, and diabetic retinopathy) are among the most common conditions that afflict people of at least 65 years of age. An increasing body of evidence is emerging, which demonstrates that memory and vision impairment are closely, significantly, and positively linked and that statins and aspirin may lessen the risk of developing age-related visual and neurological problems. However, clinical studies have produced contradictory results. Thus, the intent of the present study was to reliably establish whether a relationship exist between various types of dementia and age-related vision disorders, and to establish whether statins and aspirin may or may not have beneficial effects on these two types of disorders. We found that participants with dementia and/or vision problems were more likely to be depressed and displayed worse functional ability in basic and instrumental activities of daily living than controls. Mini mental state examination scores were significantly lower in patients with vision disorders compared to subjects without vision disorders. A closer association with macular degeneration was found in subjects with Alzheimer’s disease than in subjects without dementia or with vascular dementia, mixed dementia, or other types of age-related vision disorders. When we considered the associations between different types of dementia and vision disorders and the use of statins and aspirin, we found a significant positive association between Alzheimer’s disease and statins on their own or in combination with aspirin, indicating that these two drugs do not appear to reduce the risk of Alzheimer’s disease or improve its clinical evolution and may, on the contrary, favor its development. No significant association in statin use alone, aspirin use alone, or the combination of these was found in subjects without vision disorders but with dementia, and, similarly, none in subjects with vision disorders but without dementia. Overall, these results confirm the general impression so far; namely, that macular degeneration may contribute to cognitive disorders (Alzheimer’s disease in particular). In addition, they also suggest that, while statin and aspirin use may undoubtedly have some protective effects, they do not appear to be magic pills against the development of cognitive impairment or vision disorders in the elderly
Octet Baryon Magnetic Moments in the Chiral Quark Model with Configuration Mixing
The Coleman-Glashow sum-rule for magnetic moments is always fulfilled in the
chiral quark model, independently of SU(3) symmetry breaking. This is due to
the structure of the wave functions, coming from the non-relativistic quark
model. Experimentally, the Coleman-Glashow sum-rule is violated by about ten
standard deviations. To overcome this problem, two models of wave functions
with configuration mixing are studied. One of these models violates the
Coleman-Glashow sum-rule to the right degree and also reproduces the octet
baryon magnetic moments rather accurately.Comment: 22 pages, RevTe
- …
