237 research outputs found
The retina of Spalax ehrenbergi: Novel histologic features supportive of a modified photosensory role
FWN – Publicaties zonder aanstelling Universiteit Leide
Calibration Model Maintenance in Melamine Resin Production: Integrating Drift Detection, Smart Sample Selection and Model Adaptation
The physico-chemical properties of Melamine Formaldehyde (MF) based thermosets are largely influenced by the degree of polymerization (DP) in the underlying resin. On-line supervision of the turbidity point by means of vibrational spectroscopy has recently emerged as a promising technique to monitor the DP of MF resins. However, spectroscopic determination of the DP relies on chemometric models, which are usually sensitive to drifts caused by instrumental and/or sample associated changes occurring over time. In order to detect the time point when drifts start causing prediction bias, we here explore a universal drift detector based on a faded version of the Page-Hinkley (PH) statistic, which we test in three data streams from an industrial MF resin production process. We employ committee disagreement (CD), computed as the variance of model predictions from an ensemble of partial least squares (PLS) models, as a measure for sample-wise prediction uncertainty and use the PH statistic to detect hanges in this quantity. We further explore supervised and unsupervised strategies for (semi-)automatic model adaptation upon detection of a drift. For the former, manual reference measurements are requested whenever statistical thresholds on Hotelling’s and/or Q-Residuals are violated. Models are subsequently re-calibrated using weighted partial least squares in order to increase the influence of newer samples, which increases the flexibility when adapting to new (drifted) states. Unsupervised model adaptation is carried out exploiting the dual antecedent-consequent structure of a recently developed fuzzy systems variant of PLS termed FLEXFIS-PLS. In particular, antecedent parts are updated while maintaining the internal structure of the local linear predictors (i.e. the consequents). We found improved drift detection capability of the CD compared to Hotelling’s and Q-Residuals when used in combination with the proposed PH test. Furthermore, we found that active selection of samples by active learning (AL) used for subsequent model adaptation is advantageous compared to passive (random) selection in case that a drift leads to persistent prediction bias allowing more rapid adaptation at lower reference measurement rates. Fully unsupervised adaptation using FLEXFIS-PLS could improve predictive accuracy significantly for light drifts but was not able to fully compensate for prediction bias in case of significant lack of fit w.r.t. the latent variable space
Management of the COVID-19 pandemic: analysis of the perception of professionals of emergency medical systems in Spain after the first wave
OBJECTIVE: The objective of this study was to identify the perceived problems by medical and nursing professionals that have arisen in the Spanish Emergency Medical Services (EMS) as a consequence of the first wave of the severe acute respiratory syndrome-coronavirus-2/SARS-CoV-2 pandemic, as well as the measures or solutions adopted to manage those problems and improve response. METHOD: This was a cross-sectional study of quantitative and qualitative methodology (“mixed methods”) using a self-administered questionnaire in 23 key informants of EMS of Spain selected by purposeful sampling, followed by the statistical analysis of both types of variables and an integration of the results in the discussion. RESULTS: Common problems had been identified in many EMS, as well as similar solutions in some of them. Among the former, the following had been found: lack of leadership and support from managers, initial shortage of personal protective equipment (PPE), lack of participation in decision making, initial lack of clinical protocols, and slowness and/or lack of adaptability of the system, among others. Among the solutions adopted: reinforcement of emergency call centers, development of specific coronavirus disease 2019 (COVID-19) telephone lines and new resources, personal effort of professionals, new functions of EMS, support to other structures, and reinforcement of the role of nursing. CONCLUSION: The general perception among the respondents was that there was a lack of support and communication with health care managers and that the staff expertise was not used by policy makers to make decisions adapted to reality, also expressing the need to improve the capacity for analysis of the EMS response. Few respondents reported good overall satisfaction with their EMS response. The EMS adopted different types of measures to adapt to the COVID-19 pandemic
Inactivation influences the extent of inhibition of voltage-gated Ca+2 channels by Gem-implications for channelopathies.
Voltage-gated Ca2+ channels (VGCC) directly control muscle contraction and neurotransmitter release, and slower processes such as cell differentiation, migration, and death. They are potently inhibited by RGK GTP-ases (Rem, Rem2, Rad, and Gem/Kir), which decrease Ca2+ channel membrane expression, as well as directly inhibit membrane-resident channels. The mechanisms of membrane-resident channel inhibition are difficult to study because RGK-overexpression causes complete or near complete channel inhibition. Using titrated levels of Gem expression in Xenopus oocytes to inhibit WT P/Q-type calcium channels by ∼50%, we show that inhibition is dependent on channel inactivation. Interestingly, fast-inactivating channels, including Familial Hemiplegic Migraine mutants, are more potently inhibited than WT channels, while slow-inactivating channels, such as those expressed with the Cavβ2a auxiliary subunit, are spared. We found similar results in L-type channels, and, remarkably, Timothy Syndrome mutant channels were insensitive to Gem inhibition. Further results suggest that RGKs slow channel recovery from inactivation and further implicate RGKs as likely modulating factors in channelopathies
Solar energetic electron events measured by MESSENGER and Solar Orbiter. Peak intensity and energy spectrum radial dependences: statistical analysis
Context/Aims: We present a list of 61 solar energetic electron (SEE) events
measured by the MESSENGER mission and the radial dependences of the electron
peak intensity and the peak-intensity energy spectrum. The analysis comprises
the period from 2010 to 2015, when MESSENGER heliocentric distance varied
between 0.31 and 0.47 au. We also show the radial dependencies for a shorter
list of 12 SEE events measured in February and March 2022 by spacecraft near 1
au and by Solar Orbiter around its first close perihelion at 0.32 au.
Results: Due to the elevated background intensity level of the particle
instrument on board MESSENGER, the SEE events measured by this mission are
necessarily large and intense; most of them accompanied by a CME-driven shock,
being widespread in heliolongitude, and displaying relativistic (1 MeV)
electron intensity enhancements. The two main conclusions derived from the
analysis of the large SEE events measured by MESSENGER, which are generally
supported by Solar Orbiter's data results, are: (1) There is a wide variability
in the radial dependence of the electron peak intensity between 0.3 au
and 1 au, but the peak intensities of the energetic electrons decrease
with radial distance from the Sun in 27 out of 28 events. On average and within
the uncertainties, we find a radial dependence consistent with . (2)
The electron spectral index found in the energy range around 200 keV
(200) of the backward-scattered population near 0.3 au measured by
MESSENGER is harder in 19 out of 20 (15 out of 18) events by a median factor of
20% (10%) when comparing to the anti-sunward propagating beam
(backward-scattered population) near 1 au.Comment: 20 pages, 13 figure
Chemoattractant Receptor Homologous to the T Helper 2 Cell (CRTH2) Is Not Expressed in Human Amniocytes and Myocytes
BACKGROUND: 15-deoxy-Δ 12,14- Prostaglandin J2 (15dPGJ2) inhibits Nuclear factor kappa B (NF-κB) in human myocytes and amniocytes and delays inflammation induced preterm labour in the mouse. 15dPGJ2 is a ligand for the Chemoattractant Receptor Homologous to the T helper 2 cell (CRTH2), a G protein-coupled receptor, present on a subset of T helper 2 (Th2) cells, eosinophils and basophils. It is the second receptor for Prostaglandin D2, whose activation leads to chemotaxis and the production of Th2-type interleukins. The cellular distribution of CRTH2 in non-immune cells has not been extensively researched, and its identification at the protein level has been limited by the lack of specific antibodies. In this study we explored the possibility that CRTH2 plays a role in 15dPGJ2-mediated inhibition of NF-κB and would therefore represent a novel small molecule therapeutic target for the prevention of inflammation induced preterm labour. METHODS: The effect of a small molecule CRTH2 agonist on NF-κB activity in human cultured amniocytes and myocytes was assessed by detection of p65 and phospho-p65 by immunoblot. Endogenous CRTH2 expression in amniocytes, myocytes and peripheral blood mononuclear cells (PBMCs) was examined by PCR, western analysis and flow cytometry, with amniocytes and myocytes transfected with CRTH2 acting as a positive control in flow cytometry studies. RESULTS: The CRTH2 agonist had no effect on NF-κB activity in amniocytes and myocytes. Although CRTH2 mRNA was detected in amniocytes and myocytes, CRTH2 was not detectable at the protein level, as demonstrated by western analysis and flow cytometry. 15dPGJ2 inhibited phospho-65 in PBMC'S, however the CRTH2 antagonist was not able to attenuate this effect. In conclusion, CRTH2 is not expressed on human amniocytes or myocytes and plays no role in the mechanism of 15dPGJ2-mediated inhibition of NF-κB
Light Perception in Two Strictly Subterranean Rodents: Life in the Dark or Blue?
BACKGROUND: The African mole-rats (Bathyergidae, Rodentia) are strictly subterranean, congenitally microphthalmic rodents that are hardly ever exposed to environmental light. Because of the lack of an overt behavioural reaction to light, they have long been considered to be blind. However, recent anatomical studies have suggested retention of basic visual capabilities. In this study, we employed behavioural tests to find out if two mole-rat species are able to discriminate between light and dark, if they are able to discriminate colours and, finally, if the presence of light in burrows provokes plugging behaviour, which is assumed to have a primarily anti-predatory function. METHODOLOGY/PRINCIPAL FINDING: We used a binary choice test to show that the silvery mole-rat Heliophobius argenteocinereus and the giant mole-rat Fukomys mechowii exhibit a clear photoavoidance response to full-spectrum ("white"), blue and green-yellow light, but no significant reaction to ultraviolet or red light during nest building. The mole-rats thus retain dark/light discrimination capabilities and a capacity to perceive short to medium-wavelength light in the photopic range of intensities. These findings further suggest that the mole-rat S opsin has its absorption maximum in the violet/blue part of the spectrum. The assay did not yield conclusive evidence regarding colour discrimination. To test the putative role of vision in bathyergid anti-predatory behaviour, we examined the reaction of mole-rats to the incidence of light in an artificial burrow system. The presence of light in the burrow effectively induced plugging of the illuminated tunnel. CONCLUSION/SIGNIFICANCE: Our findings suggest that the photopic vision is conserved and that low acuity residual vision plays an important role in predator avoidance and tunnel maintenance in the African mole-rats
First near-relativistic solar electron events observed by EPD onboard Solar Orbiter
Context. Solar Orbiter, launched in February 2020, started its cruise phase in June 2020, in coincidence with its first perihelion at 0.51 au from the
Sun. The in situ instruments onboard, including the Energetic Particle Detector (EPD), operate continuously during the cruise phase enabling the
observation of solar energetic particles.
Aims. In situ measurements of the first near-relativistic solar electron events observed in July 2020 by EPD are analyzed and the solar origins and
the conditions for the interplanetary transport of these particles investigated.
Methods. Electron observations from keV energies to the near-relativistic range were combined with the detection of type III radio bursts and
extreme ultraviolet (EUV) observations from multiple spacecraft in order to identify the solar origin of the electron events. Electron anisotropies
and timing as well as the plasma and magnetic field environment were evaluated to characterize the interplanetary transport conditions.
Results. All electron events were clearly associated with type III radio bursts. EUV jets were also found in association with all of them except
one. A diversity of time profiles and pitch-angle distributions was observed. Different source locations and different magnetic connectivity and
transport conditions were likely involved. The July 11 event was also detected by Wind, separated 107 degrees in longitude from Solar Orbiter.
For the July 22 event, the Suprathermal Electron and Proton (STEP) sensor of EPD allowed for us to not only resolve multiple electron injections
at low energies, but it also provided an exceptionally high pitch-angle resolution of a very anisotropic beam. This, together with radio observations
of local Langmuir waves suggest a very good magnetic connection during the July 22 event. This scenario is challenged by a high-frequency
occultation of the type III radio burst and a nominally non-direct connection to the source; therefore, magnetic connectivity requires further
investigation
Isotopic Composition of Light Nuclei in Cosmic Rays: Results from AMS-01
The variety of isotopes in cosmic rays allows us to study different aspects
of the processes that cosmic rays undergo between the time they are produced
and the time of their arrival in the heliosphere. In this paper we present
measurements of the isotopic ratios 2H/4He, 3He/4He, 6Li/7Li, 7Be/(9Be+10Be)
and 10B/11B in the range 0.2-1.4 GeV of kinetic energy per nucleon. The
measurements are based on the data collected by the Alpha Magnetic
Spectrometer, AMS-01, during the STS-91 flight in 1998 June.Comment: To appear in ApJ. 12 pages, 11 figures, 6 table
- …
