314 research outputs found
Cardiac Potassium Channels: Physiological Insights for Targeted Therapy.
The development of novel drugs specifically directed at the ion channels underlying particular features of cardiac action potential (AP) initiation, recovery, and refractoriness would contribute to an optimized approach to antiarrhythmic therapy that minimizes potential cardiac and extracardiac toxicity. Of these, K(+) channels contribute numerous and diverse currents with specific actions on different phases in the time course of AP repolarization. These features and their site-specific distribution make particular K(+) channel types attractive therapeutic targets for the development of pharmacological agents attempting antiarrhythmic therapy in conditions such as atrial fibrillation. However, progress in the development of such temporally and spatially selective antiarrhythmic drugs against particular ion channels has been relatively limited, particularly in view of our incomplete understanding of the complex physiological roles and interactions of the various ionic currents. This review summarizes the physiological properties of the main cardiac potassium channels and the way in which they modulate cardiac electrical activity and then critiques a number of available potential antiarrhythmic drugs directed at them
Gender differences in beliefs about health:A comparative qualitative study with Ghanaian and Indian migrants living in the United Kingdom
Background
There is a well-established association between migration to high income countries and health status, with some groups reporting poorer health outcomes than the host population. However, processes that influence health behaviours and health outcomes across minority ethnic groups are complex and in addition, culture ascribes specific gender roles for men and women, which can further influence perspectives of health.
The aim of this study was to undertake a comparative exploration of beliefs of health among male and female Ghanaian and Indian migrants and White British participants residing in an urban area within the UK.
Methods
Thirty-six participants (12 each Ghanaian, Indian and White British) were recruited through community settings and participated in a semi-structured interview focusing on participant’s daily life in the UK, perceptions of their own health and how they maintained their health. Interviews were analyzed using a Framework approach.
Results
Three super ordinate themes were identified and labelled (a) beliefs about health; (b) symptom interpretation and (c) self-management and help seeking. Gender differences in beliefs and health behaviour practices were apparent across participants.
Conclusions
This is the first study to undertake a comparative exploration of health beliefs among people who have migrated to the UK from Ghana and India and to compare with a local (White British) population. The results highlight a need to consider both cultural and gender-based diversity in guiding health behaviours, and such information will be useful in the development of interventions to support health outcomes among migrant populations
Cardiac electrophysiological adaptations in the equine athlete-Restitution analysis of electrocardiographic features.
Exercising horses uniquely accommodate 7-8-fold increases in heart rate (HR). The present experiments for the first time analysed the related adaptations in action potential (AP) restitution properties recorded by in vivo telemetric electrocardiography from Thoroughbred horses. The horses were subjected to a period of acceleration from walk to canter. The QRS durations, and QT and TQ intervals yielded AP conduction velocities, AP durations (APDs) and diastolic intervals respectively. From these, indices of active, λ = QT/(QRS duration), and resting, λ0 = TQ/(QRS duration), AP wavelengths were calculated. Critical values of QT and TQ intervals, and of λ and λ0 at which plots of these respective pairs of functions showed unity slope, were obtained. These were reduced by 38.9±2.7% and 86.2±1.8%, and 34.1±3.3% and 85.9±1.2%, relative to their resting values respectively. The changes in λ were attributable to falls in QT interval rather than QRS duration. These findings both suggested large differences between the corresponding critical (129.1±10.8 or 117.4±5.6 bpm respectively) and baseline HRs (32.9±2.1 (n = 7) bpm). These restitution analyses thus separately identified concordant parameters whose adaptations ensure the wide range of HRs over which electrophysiological activation takes place in an absence of heart block or arrhythmias in equine hearts. Since the horse is amenable to this in vivo electrophysiological analysis and displays a unique wide range of heart rates, it could be a novel cardiac electrophysiology animal model for the study of sudden cardiac death in human athletes
Childhood outcomes after low-grade intraventricular haemorrhage: A systematic review and meta-analysis
Aim: To undertake a systematic review and meta-analysis exploring school-age neurodevelopmental outcomes of children after low-grade intraventricular haemorrhage (IVH). Method: The published and grey literature was extensively searched to identify observational comparative studies exploring neurodevelopmental outcomes after IVH grades 1 and 2. Our primary outcome was neurodevelopmental impairment after 5 years of age, which included cognitive, motor, speech and language, behavioural, hearing, or visual impairments. Results: This review included 12 studies and over 2036 infants born preterm with low grade IVH. Studies used 30 different neurodevelopmental tools to determine outcomes. There was conflicting evidence of the composite risk of neurodevelopmental impairment after low-grade IVH. There was evidence of an association between low-grade IVH and lower IQ at school age (−4.23, 95% confidence interval [CI] –7.53, −0.92, I2 = 0%) but impact on school performance was unclear. Studies reported an increased crude risk of cerebral palsy after low-grade IVH (odds ratio [OR] 2.92, 95% CI 1.95, 4.37, I2 = 41%). No increased risk of speech and language impairment or behavioural impairment was found. Few studies addressed hearing and visual impairment. Interpretation: This systematic review presents evidence that low-grade IVH is associated with specific neurodevelopmental impairments at school age, lending support to the theory that low-grade IVH is not a benign condition
Recommended from our members
Molecular basis of arrhythmic substrate in ageing murine peroxisome proliferator-activated receptor γ co-activator deficient hearts modelling mitochondrial dysfunction.
INTRODUCTION: Ageing and chronic metabolic disorders are associated with mitochondrial dysfunction and cardiac pro-arrhythmic phenotypes which were recently attributed to slowed atrial and ventricular action potential (AP) conduction in peroxisome proliferator-activated receptor γ co-activator deficient (Pgc-1β-/-) mice. METHODS: We compared expression levels of voltage-gated Na+ channel (NaV1.5) and gap junction channels, Connexins 40 and 43 (Cx40 and Cx43) in the hearts of young and old, and wild-type (WT) and Pgc-1β-/- mice. This employed Western blotting (WB) for NaV1.5, Cx40 and Cx43 in atrial/ventricular tissue lysates, and immunofluorescence (IF) from Cx43 was explored in tissue sections. Results were analysed using two-way analysis of variance (ANOVA) for independent/interacting effects of age and genotype. RESULTS: In atria, increased age and Pgc-1β-/- genotype each independently decreased both Cx40 and Cx43 expression without interacting effects. In IF experiments, both age and Pgc-1β deletion independently reduced Cx43 expression. In ventricles, age and genotype exerted interacting effects in WB studies of NaV1.5 expression. Young Pgc-1β-/- then showed greater NaV1.5 expression than young WT ventricles. However, neither age nor Pgc-1β deletion affected Cx43 expression, independently or through interacting effects in both WB and IF studies. CONCLUSION: Similar pro-arrhythmic atrial/ventricular phenotypes arise in aged/Pgc-1β-/- from differing contributions of altered protein expression and functional effects that may arise from multiple acute mechanisms
Yeast Rad52 is a homodecamer and possesses BRCA2-like bipartite Rad51 binding modes
Homologous recombination (HR) is an essential double-stranded DNA break repair pathway. In HR, Rad52 facilitates the formation of Rad51 nucleoprotein filaments on RPA-coated ssDNA. Here, we decipher how Rad52 functions using single-particle cryo-electron microscopy and biophysical approaches. We report that Rad52 is a homodecameric ring and each subunit possesses an ordered N-terminal and disordered C-terminal half. An intrinsic structural asymmetry is observed where a few of the C-terminal halves interact with the ordered ring. We describe two conserved charged patches in the C-terminal half that harbor Rad51 and RPA interacting motifs. Interactions between these patches regulate ssDNA binding. Surprisingly, Rad51 interacts with Rad52 at two different bindings sites: one within the positive patch in the disordered C-terminus and the other in the ordered ring. We propose that these features drive Rad51 nucleation onto a single position on the DNA to promote formation of uniform pre-synaptic Rad51 filaments in HR
The effects of ageing and adrenergic challenge on electrocardiographic phenotypes in a murine model of long QT syndrome type 3.
Long QT Syndrome 3 (LQTS3) arises from gain-of-function Nav1.5 mutations, prolonging action potential repolarisation and electrocardiographic (ECG) QT interval, associated with increased age-dependent risk for major arrhythmic events, and paradoxical responses to β-adrenergic agents. We investigated for independent and interacting effects of age and Scn5a+/ΔKPQ genotype in anaesthetised mice modelling LQTS3 on ECG phenotypes before and following β-agonist challenge, and upon fibrotic change. Prolonged ventricular recovery was independently associated with Scn5a+/ΔKPQ and age. Ventricular activation was prolonged in old Scn5a+/ΔKPQ mice (p = 0.03). We associated Scn5a+/ΔKPQ with increased atrial and ventricular fibrosis (both: p < 0.001). Ventricles also showed increased fibrosis with age (p < 0.001). Age and Scn5a+/ΔKPQ interacted in increasing incidences of repolarisation alternans (p = 0.02). Dobutamine increased ventricular rate (p < 0.001) and reduced both atrioventricular conduction (PR segment-p = 0.02; PR interval-p = 0.02) and incidences of repolarisation alternans (p < 0.001) in all mice. However, in Scn5a+/ΔKPQ mice, dobutamine delayed the changes in ventricular repolarisation following corresponding increases in ventricular rate. The present findings implicate interactions between age and Scn5a+/ΔKPQ in prolonging ventricular activation, correlating them with fibrotic change for the first time, adding activation abnormalities to established recovery abnormalities in LQTS3. These findings, together with dynamic electrophysiological responses to β-adrenergic challenge, have therapeutic implications for ageing LQTS patients
Atrial Transcriptional Profiles of Molecular Targets Mediating Electrophysiological Function in Aging and Pgc-1β Deficient Murine Hearts
BackgroundDeficiencies in the transcriptional co-activator, peroxisome proliferative activated receptor, gamma, coactivator-1β are implicated in deficient mitochondrial function. The latter accompanies clinical conditions including aging, physical inactivity, obesity, and diabetes. Recent electrophysiological studies reported that Pgc-1β-/- mice recapitulate clinical age-dependent atrial pro-arrhythmic phenotypes. They implicated impaired chronotropic responses to adrenergic challenge, compromised action potential (AP) generation and conduction despite normal AP recovery timecourses and background resting potentials, altered intracellular Ca2+ homeostasis, and fibrotic change in the observed arrhythmogenicity.ObjectiveWe explored the extent to which these age-dependent physiological changes correlated with alterations in gene transcription in murine Pgc-1β-/- atria.Methods and ResultsRNA isolated from murine atrial tissue samples from young (12–16 weeks) and aged (>52 weeks of age), wild type (WT) and Pgc-1β-/- mice were studied by pre-probed quantitative PCR array cards. We examined genes encoding sixty ion channels and other strategic atrial electrophysiological proteins. Pgc-1β-/- genotype independently reduced gene transcription underlying Na+-K+-ATPase, sarcoplasmic reticular Ca2+-ATPase, background K+ channel and cholinergic receptor function. Age independently decreased Na+-K+-ATPase and fibrotic markers. Both factors interacted to alter Hcn4 channel activity underlying atrial automaticity. However, neither factor, whether independently or interactively, affected transcription of cardiac Na+, voltage-dependent K+ channels, surface or intracellular Ca2+ channels. Nor were gap junction channels, β-adrenergic receptors or transforming growth factor-β affected.ConclusionThese findings limit the possible roles of gene transcriptional changes in previously reported age-dependent pro-arrhythmic electrophysiologial changes observed in Pgc-1β-/- atria to an altered Ca2+-ATPase (Atp2a2) expression. This directly parallels previously reported arrhythmic mechanism associated with p21-activated kinase type 1 deficiency. This could add to contributions from the direct physiological outcomes of mitochondrial dysfunction, whether through reactive oxygen species (ROS) production or altered Ca2+ homeostasis
Vitamin D deficiency and duration of COVID-19 symptoms in UK healthcare workers
Objectives: Vitamin D has a role in the innate immunity against pathogens and is also involved in mechanisms for reducing inflammation. VD deficiency (VDD) may increase COVID-19 infection susceptibility, however research is limited on the association between VDD and COVID-19 symptom prevalence and duration. The study aimed to determine whether VDD is a risk factor for the presence and extended duration of COVID-19 symptoms. Methods: Data was analyzed from NHS healthcare workers who isolated due to COVID-19 symptoms as a part of the COVID-19 convalescent immunity study between 12th to 22nd May 2020. Participants self-reported the presence and duration of viral symptoms. Anti-SARS-CoV-2 antibodies and vitamin D (25(OH)D3) serum levels were measured on day of recruitment. VDD was defined as 25(OH)D3 levels of < 30 nmol/l. Results: Of the 392 participants, 15.6% (n = 61) had VDD. VDD participants had more symptoms overall (p = 0.0030), including body aches (p = 0.0453), and extended duration of body aches (p = 0.0075) and fatigue (p = 0.0127). Binary logistic regression found that both VDD (OR 3.069, 95% CI 1.538–6.124; p = 0.001) and age (OR 1.026, 95% CI 1.003–1.049; p = 0.025) were independently associated with extended durations of body aches. VDD (OR 2.089, 95% CI 1.087–4.011; p = 0.027), age (OR 1.036, 95% CI 1.016–1.057; p < 0.001) and seroconversion (OR 1.917, 95% CI 1.203–3.056; p = 0.006), were independently associated with extended durations of fatigue. Conclusion: VDD is a significant independent risk factor for extended durations of body aches and fatigue in healthcare workers who isolated for COVID-19 viral symptoms. Vitamin D supplementation may reduce symptom duration and is thus an area for future research.</p
- …
