804 research outputs found

    Monte Carlo techniques for real-time quantum dynamics

    Full text link
    The stochastic-gauge representation is a method of mapping the equation of motion for the quantum mechanical density operator onto a set of equivalent stochastic differential equations. One of the stochastic variables is termed the "weight", and its magnitude is related to the importance of the stochastic trajectory. We investigate the use of Monte Carlo algorithms to improve the sampling of the weighted trajectories and thus reduce sampling error in a simulation of quantum dynamics. The method can be applied to calculations in real time, as well as imaginary time for which Monte Carlo algorithms are more-commonly used. The method is applicable when the weight is guaranteed to be real, and we demonstrate how to ensure this is the case. Examples are given for the anharmonic oscillator, where large improvements over stochastic sampling are observed.Comment: 28 pages, submitted to J. Comp. Phy

    Distributed digital contexts and learning : personal empowerment and social transformation in marginalized populations

    Get PDF
    The role of digital media and learning has often been synonymous with the use of open education resources in formal institutional settings. Further, open and distance learning has been criticized for focusing narrowly on educational objectives, ignoring socio-political issues of access and participation by marginalized populations. This study examines the lived experiences of female migrant domestic workers (N=20) in Singapore attending Open University. Mobile and social media supplement open and distance learning resources to allow for open practices of consumption, production and sharing in distributed contexts of digital learning. Marginalized students engaged in participation and collaboration activities, with specific privacy practices due to their social positions. Digital learning led to substantive learning for personal empowerment and social transformation, with aspirational strategies often involving digital skills. The discussion reflects on identity management across formal and informal digital settings as a means of transforming societal discourses of discrimination

    Estimation of a semiparametric recursive bivariate probit model with nonparametric mixing

    Get PDF
    We consider an extension of the recursive bivariate probit model for estimating the effect of a binary variable on a binary outcome in the presence of unobserved confounders, nonlinear covariate effects and overdispersion. Specifically, the model consists of a system of two binary outcomes with a binary endogenous regressor which includes smooth functions of covariates, hence allowing for flexible functional dependence of the responses on the continuous regressors, and arbitrary random intercepts to deal with overdispersion arising from correlated observations on clusters or from the omission of non-confounding covariates. We fit the model by maximizing a penalized likelihood using an Expectation-Maximisation algorithm. The issues of automatic multiple smoothing parameter selection and inference are also addressed. The empirical properties of the proposed algorithm are examined in a simulation study. The method is then illustrated using data from a survey on health, aging and wealth

    Regression spline bivariate probit models: A practical approach to testing for exogeneity

    Get PDF
    Bivariate probit models can deal with a problem usually known as endogeneity. This issue is likely to arise in observational studies when confounders are unobserved. We are concerned with testing the hypothesis of exogeneity (or absence of endogeneity) when using regression spline recursive and sample selection bivariate probit models. Likelihood ratio and gradient tests are discussed in this context and their empirical properties investigated and compared with those of the Lagrange multiplier and Wald tests through a Monte Carlo study. The tests are illustrated using two datasets in which the hypothesis of exogeneity needs to be tested

    MCMC implementation for Bayesian hidden semi-Markov models with illustrative applications

    Get PDF
    Copyright © Springer 2013. The final publication is available at Springer via http://dx.doi.org/10.1007/s11222-013-9399-zHidden Markov models (HMMs) are flexible, well established models useful in a diverse range of applications. However, one potential limitation of such models lies in their inability to explicitly structure the holding times of each hidden state. Hidden semi-Markov models (HSMMs) are more useful in the latter respect as they incorporate additional temporal structure by explicit modelling of the holding times. However, HSMMs have generally received less attention in the literature, mainly due to their intensive computational requirements. Here a Bayesian implementation of HSMMs is presented. Recursive algorithms are proposed in conjunction with Metropolis-Hastings in such a way as to avoid sampling from the distribution of the hidden state sequence in the MCMC sampler. This provides a computationally tractable estimation framework for HSMMs avoiding the limitations associated with the conventional EM algorithm regarding model flexibility. Performance of the proposed implementation is demonstrated through simulation experiments as well as an illustrative application relating to recurrent failures in a network of underground water pipes where random effects are also included into the HSMM to allow for pipe heterogeneity

    Developing a mHealth intervention to promote uptake of HIV testing among African communities in the UK: a qualitative study

    Get PDF
    Background: HIV-related mHealth interventions have demonstrable efficacy in supporting treatment adherence, although the evidence base for promoting HIV testing is inconclusive. Progress is constrained by a limited understanding of processes used to develop interventions and weak theoretical underpinnings. This paper describes a research project that informed the development of a theory-based mHealth intervention to promote HIV testing amongst city-dwelling African communities in the UK. Methods: A community-based participatory social marketing design was adopted. Six focus groups (48 participants in total) were undertaken and analysed using a thematic framework approach, guided by constructs from the Health Belief Model. Key themes were incorporated into a set of text messages, which were pre-tested and refined. Results: The focus groups identified a relatively low perception of HIV risk, especially amongst men, and a range of social and structural barriers to HIV testing. In terms of self-efficacy around HIV testing, respondents highlighted a need for communities and professionals to work together to build a context of trust through co-location in, and co-involvement of, local communities which would in turn enhance confidence in, and support for, HIV testing activities of health professionals. Findings suggested that messages should: avoid an exclusive focus on HIV, be tailored and personalised, come from a trusted source, allay fears and focus on support and health benefits. Conclusions: HIV remains a stigmatized and de-prioritized issue within African migrant communities in the UK, posing barriers to HIV testing initiatives. A community-based participatory social marketing design can be successfully used to develop a culturally appropriate text messaging HIV intervention. Key challenges involved turning community research recommendations into brief text messages of only 160 characters. The intervention needs to be evaluated in a randomized control trial. Future research should explore the application of the processes and methodologies described in this paper within other communities

    Decision Support System for the Response to Infectious Disease Emergencies Based on WebGIS and Mobile Services in China

    Get PDF
    Background: For years, emerging infectious diseases have appeared worldwide and threatened the health of people. The emergence and spread of an infectious-disease outbreak are usually unforeseen, and have the features of suddenness and uncertainty. Timely understanding of basic information in the field, and the collection and analysis of epidemiological information, is helpful in making rapid decisions and responding to an infectious-disease emergency. Therefore, it is necessary to have an unobstructed channel and convenient tool for the collection and analysis of epidemiologic information in the field. Methodology/Principal Findings: Baseline information for each county in mainland China was collected and a database was established by geo-coding information on a digital map of county boundaries throughout the country. Google Maps was used to display geographic information and to conduct calculations related to maps, and the 3G wireless network was used to transmit information collected in the field to the server. This study established a decision support system for the response to infectious-disease emergencies based on WebGIS and mobile services (DSSRIDE). The DSSRIDE provides functions including data collection, communication and analyses in real time, epidemiological detection, the provision of customized epidemiological questionnaires and guides for handling infectious disease emergencies, and the querying of professional knowledge in the field. These functions of the DSSRIDE could be helpful for epidemiological investigations in the field and the handling of infectious-disease emergencies. Conclusions/Significance: The DSSRIDE provides a geographic information platform based on the Google Maps application programming interface to display information of infectious disease emergencies, and transfers information between workers in the field and decision makers through wireless transmission based on personal computers, mobile phones and personal digital assistants. After a 2-year practice and application in infectious disease emergencies, the DSSRIDE is becoming a useful platform and is a useful tool for investigations in the field carried out by response sections and individuals. The system is suitable for use in developing countries and low-income districts

    Activity in Inferior Parietal and Medial Prefrontal Cortex Signals the Accumulation of Evidence in a Probability Learning Task

    Get PDF
    In an uncertain environment, probabilities are key to predicting future events and making adaptive choices. However, little is known about how humans learn such probabilities and where and how they are encoded in the brain, especially when they concern more than two outcomes. During functional magnetic resonance imaging (fMRI), young adults learned the probabilities of uncertain stimuli through repetitive sampling. Stimuli represented payoffs and participants had to predict their occurrence to maximize their earnings. Choices indicated loss and risk aversion but unbiased estimation of probabilities. BOLD response in medial prefrontal cortex and angular gyri increased linearly with the probability of the currently observed stimulus, untainted by its value. Connectivity analyses during rest and task revealed that these regions belonged to the default mode network. The activation of past outcomes in memory is evoked as a possible mechanism to explain the engagement of the default mode network in probability learning. A BOLD response relating to value was detected only at decision time, mainly in striatum. It is concluded that activity in inferior parietal and medial prefrontal cortex reflects the amount of evidence accumulated in favor of competing and uncertain outcomes

    The diffusion of a new service: Combining service consideration and brand choice

    Get PDF
    We propose an individual-level model of a two-stage service diffusion process. In the first stage, customers decide whether to "consider" joining the service. This (Consideration) stage is modeled by a hazard model. Customers who decide to consider the service move on to the Choice stage, wherein they choose among the service alternatives and an outside No Choice option. This stage is modeled by a conditional Multinomial Logit model. The service provider does not observe the transition in the first stage of potential customers who have yet to choose a brand. Such potential customers may have started to consider joining the service, yet chose the outside alternative in each period thereafter. One of the main contributions of the model is its ability to distinguish between these two non-adopter types. We estimated the model using data on the adoption process of newly introduced service plans offered by a commercial bank. We employed the hierarchical Bayes Monte Carlo Markov Chain procedure to estimate individual as well as population parameters. The empirical results indicate that the model outperforms competing models in breadth of analysis, model fit, and prediction accuracy

    Bayesian inference of accurate population sizes and FRET efficiencies from single diffusing biomolecules.

    Get PDF
    It is of significant biophysical interest to obtain accurate intramolecular distance information and population sizes from single-molecule Förster resonance energy transfer (smFRET) data obtained from biomolecules in solution. Experimental methods of increasing cost and complexity are being developed to improve the accuracy and precision of data collection. However, the analysis of smFRET data sets currently relies on simplistic, and often arbitrary methods, for the selection and denoising of fluorescent bursts. Although these methods are satisfactory for the analysis of simple, low-noise systems with intermediate FRET efficiencies, they display systematic inaccuracies when applied to more complex systems. We have developed an inference method for the analysis of smFRET data from solution studies based on rigorous model-based Bayesian techniques. We implement a Monte Carlo Markov chain (MCMC) based algorithm that simultaneously estimates population sizes and intramolecular distance information directly from a raw smFRET data set, with no intermediate event selection and denoising steps. Here, we present both our parametric model of the smFRET process and the algorithm developed for data analysis. We test the algorithm using a combination of simulated data sets and data from dual-labeled DNA molecules. We demonstrate that our model-based method systematically outperforms threshold-based techniques in accurately inferring both population sizes and intramolecular distances.This is the final published version. It's also available from ACS in Analytical Chemistry: http://pubs.acs.org/doi/pdf/10.1021/ac501188r
    corecore