308 research outputs found

    IDeF-X ASIC for Cd(Zn)Te spectro-imaging systems

    Full text link
    Joint progresses in Cd(Zn)Te detectors, microelectronics and interconnection technologies open the way for a new generation of instruments for physics and astrophysics applications in the energy range from 1 to 1000 keV. Even working between -20 and 20 degrees Celsius, these instruments will offer high spatial resolution (pixel size ranging from 300 x 300 square micrometers to few square millimeters), high spectral response and high detection efficiency. To reach these goals, reliable, highly integrated, low noise and low power consumption electronics is mandatory. Our group is currently developing a new ASIC detector front-end named IDeF-X, for modular spectro-imaging system based on the use of Cd(Zn)Te detectors. We present here the first version of IDeF-X which consists in a set of ten low noise charge sensitive preamplifiers (CSA). It has been processed with the standard AMS 0.35 micrometer CMOS technology. The CSA are designed to be DC coupled to detectors having a low dark current at room temperature. The various preamps implemented are optimized for detector capacitances ranging from 0.5 up to 30 pF.Comment: 8 pages, 11 figures, IEEE NSS-MIC conference in Rome 2004, submitted to IEEE TNS, correction in unit of figure

    Hard X-ray polarimetry with Caliste, a high performance CdTe based imaging spectrometer

    Get PDF
    Since the initial exploration of soft gamma-ray sky in the 60's, high-energy celestial sources have been mainly characterized through imaging, spectroscopy and timing analysis. Despite tremendous progress in the field, the radiation mechanisms at work in sources such as neutrons stars and black holes are still unclear. The polarization state of the radiation is an observational parameter which brings key additional information about the physical process. This is why most of the projects for the next generation of space missions covering the tens of keV to the MeV region require a polarization measurement capability. A key element enabling this capability is a detector system allowing the identification and characterization of Compton interactions as they are the main process at play. The hard X-ray imaging spectrometer module, developed in CEA with the generic name of Caliste module, is such a detector. In this paper, we present experimental results for two types of Caliste-256 modules, one based on a CdTe crystal, the other one on a CdZnTe crystal, which have been exposed to linearly polarized beams at the European Synchrotron Radiation Facility. These results, obtained at 200-300 keV, demonstrate their capability to give an accurate determination of the polarization parameters (polarization angle and fraction) of the incoming beam. Applying a selection to our data set, equivalent to select 90 degrees Compton scattered interactions in the detector plane, we find a modulation factor Q of 0.78. The polarization angle and fraction are derived with accuracies of approximately 1 degree and 5%. The modulation factor remains larger than 0.4 when essentially no selection is made at all on the data. These results prove that the Caliste-256 modules have performances allowing them to be excellent candidates as detectors with polarimetric capabilities, in particular for future space missions.Comment: 17 pages, 14 figures, 2 tables in Experimental Astronomy, 201

    The Microchannel X-ray Telescope on Board the SVOM Satellite

    Full text link
    We present the Micro-channel X-ray Telescope (MXT), a new narrow-field (about 1{\deg}) telescope that will be flying on the Sino-French SVOM mission dedicated to Gamma-Ray Burst science, scheduled for launch in 2021. MXT is based on square micro pore optics (MPOs), coupled with a low noise CCD. The optics are based on a "Lobster Eye" design, while the CCD is a focal plane detector similar to the type developed for the seven eROSITA telescopes. MXT is a compact and light (<35 kg) telescope with a 1 m focal length, and it will provide an effective area of about 45 cmsq on axis at 1 keV. The MXT PSF is expected to be better than 4.2 arc min (FWHM) ensuring a localization accuracy of the afterglows of the SVOM GRBs to better than 1 arc min (90\% c.l. with no systematics) provided MXT data are collected within 5 minutes after the trigger. The MXT sensitivity will be adequate to detect the afterglows for almost all the SVOM GRBs as well as to perform observations of non-GRB astrophysical objects. These performances are fully adapted to the SVOM science goals, and prove that small and light telescopes can be used for future small X-ray missions.Comment: 6 pages, 6 figures, proceedings of the conference "Swift: 10 years of Discovery", Rome, December 2-5, 2014. To be published by Po

    Fast-neutron induced background in LaBr3:Ce detectors

    Full text link
    The response of a scintillation detector with a cylindrical 1.5-inch LaBr3:Ce crystal to incident neutrons has been measured in the energy range En = 2-12 MeV. Neutrons were produced by proton irradiation of a Li target at Ep = 5-14.6 MeV with pulsed proton beams. Using the time-of-flight information between target and detector, energy spectra of the LaBr3:Ce detector resulting from fast neutron interactions have been obtained at 4 different neutron energies. Neutron-induced gamma rays emitted by the LaBr3:Ce crystal were also measured in a nearby Ge detector at the lowest proton beam energy. In addition, we obtained data for neutron irradiation of a large-volume high-purity Ge detector and of a NE-213 liquid scintillator detector, both serving as monitor detectors in the experiment. Monte-Carlo type simulations for neutron interactions in the liquid scintillator, the Ge and LaBr3:Ce crystals have been performed and compared with measured data. Good agreement being obtained with the data, we present the results of simulations to predict the response of LaBr3:Ce detectors for a range of crystal sizes to neutron irradiation in the energy range En = 0.5-10 MeVComment: 28 pages, 10 figures, 4 Table

    The COSPIX mission: focusing on the energetic and obscured Universe

    Full text link
    Tracing the formation and evolution of all supermassive black holes, including the obscured ones, understanding how black holes influence their surroundings and how matter behaves under extreme conditions, are recognized as key science objectives to be addressed by the next generation of instruments. These are the main goals of the COSPIX proposal, made to ESA in December 2010 in the context of its call for selection of the M3 mission. In addition, COSPIX, will also provide key measurements on the non thermal Universe, particularly in relation to the question of the acceleration of particles, as well as on many other fundamental questions as for example the energetic particle content of clusters of galaxies. COSPIX is proposed as an observatory operating from 0.3 to more than 100 keV. The payload features a single long focal length focusing telescope offering an effective area close to ten times larger than any scheduled focusing mission at 30 keV, an angular resolution better than 20 arcseconds in hard X-rays, and polarimetric capabilities within the same focal plane instrumentation. In this paper, we describe the science objectives of the mission, its baseline design, and its performances, as proposed to ESA.Comment: 7 pages, accepted for publication in Proceedings of Science, for the 25th Texas Symposium on Relativistic Astrophysics (eds. F. Rieger &amp; C. van Eldik), PoS(Texas 2010)25

    Radiation hardness qualification of PbWO4 scintillation crystals for the CMS Electromagnetic Calorimeter

    Get PDF
    This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2010 IOPEnsuring the radiation hardness of PbWO4 crystals was one of the main priorities during the construction of the electromagnetic calorimeter of the CMS experiment at CERN. The production on an industrial scale of radiation hard crystals and their certification over a period of several years represented a difficult challenge both for CMS and for the crystal suppliers. The present article reviews the related scientific and technological problems encountered

    Intercalibration of the barrel electromagnetic calorimeter of the CMS experiment at start-up

    Get PDF
    Calibration of the relative response of the individual channels of the barrel electromagnetic calorimeter of the CMS detector was accomplished, before installation, with cosmic ray muons and test beams. One fourth of the calorimeter was exposed to a beam of high energy electrons and the relative calibration of the channels, the intercalibration, was found to be reproducible to a precision of about 0.3%. Additionally, data were collected with cosmic rays for the entire ECAL barrel during the commissioning phase. By comparing the intercalibration constants obtained with the electron beam data with those from the cosmic ray data, it is demonstrated that the latter provide an intercalibration precision of 1.5% over most of the barrel ECAL. The best intercalibration precision is expected to come from the analysis of events collected in situ during the LHC operation. Using data collected with both electrons and pion beams, several aspects of the intercalibration procedures based on electrons or neutral pions were investigated

    Performance of the CMS Cathode Strip Chambers with Cosmic Rays

    Get PDF
    The Cathode Strip Chambers (CSCs) constitute the primary muon tracking device in the CMS endcaps. Their performance has been evaluated using data taken during a cosmic ray run in fall 2008. Measured noise levels are low, with the number of noisy channels well below 1%. Coordinate resolution was measured for all types of chambers, and fall in the range 47 microns to 243 microns. The efficiencies for local charged track triggers, for hit and for segments reconstruction were measured, and are above 99%. The timing resolution per layer is approximately 5 ns

    Performance and Operation of the CMS Electromagnetic Calorimeter

    Get PDF
    The operation and general performance of the CMS electromagnetic calorimeter using cosmic-ray muons are described. These muons were recorded after the closure of the CMS detector in late 2008. The calorimeter is made of lead tungstate crystals and the overall status of the 75848 channels corresponding to the barrel and endcap detectors is reported. The stability of crucial operational parameters, such as high voltage, temperature and electronic noise, is summarised and the performance of the light monitoring system is presented
    corecore