110,546 research outputs found
Squeezing and robustness of frictionless cooling strategies
Quantum control strategies that provide shortcuts to adiabaticity are
increasingly considered in various contexts including atomic cooling. Recent
studies have emphasized practical issues in order to reduce the gap between the
idealized models and actual ongoing implementations. We rephrase here the
cooling features in terms of a peculiar squeezing effect, and use it to
parametrize the robustness of frictionless cooling techniques with respect to
noise-induced deviations from the ideal time-dependent trajectory for the
trapping frequency. We finally discuss qualitative issues for the experimental
implementation of this scheme using bichromatic optical traps and lattices,
which seem especially suitable for cooling Fermi-Bose mixtures and for
investigating equilibration of negative temperature states, respectively.Comment: 9 pages, 7 figures; To appear in Physical Review
Conformal Symmetry and Pion Form Factor: Soft and Hard Contributions
We discuss a constraint of conformal symmetry in the analysis of the pion
form factor. The usual power-law behavior of the form factor obtained in the
perturbative QCD analysis can also be attained by taking negligible quark
masses in the nonperturbative quark model analysis, confirming the recent
AdS/CFT correspondence. We analyze the transition from soft to hard
contributions in the pion form factor considering a momentum-dependent
dynamical quark mass from a nonnegligible constituent quark mass at low
momentum region to a negligible current quark mass at high momentum region. We
find a correlation between the shape of nonperturbative quark distribution
amplitude and the amount of soft and hard contributions to the pion form
factor.Comment: 7 pages, 6 figures, extensively revised, to appear in Phys. Rev.
Consistency and heterogeneity of individual behavior under uncertainty
By using graphical representations of simple portfolio choice problems,
we generate a very rich data set to study behavior under uncertainty
at the level of the individual subject. We test the data for
consistency with the maximization hypothesis, and we estimate preferences
using a two-parameter utility function based on Faruk Gul
(1991). This specification provides a good interpretation of the data
at the individual level and can account for the highly heterogeneous
behaviors observed in the laboratory. The parameter estimates jointly
describe attitudes toward risk and allow us to characterize the distribution
of risk preferences in the population
Effects of Single Metal-Ion Doping on the Visible-Light Photoreactivity of TiO_2
Titanium dioxide (M-TiO_2), which was doped with 13 different metal ions (i.e., silver (Ag^+), rubidium (Rb^+), nickel (Ni^(2+)), cobalt (Co^(2+)), copper (Cu^(2+)), vanadium (V^(3+)), ruthenium (Ru^(3+)), iron (Fe^(3+)), osmium (Os^(3+)), yttrium (Y^(3+)), lanthanum (La^(3+)), platinum (Pt^(4+), Pt^(2+)), and chromium (Cr3+, Cr6+)) at doping levels ranging from 0.1 to 1.0 at. %, was synthesized by standard sol−gel methods and characterized by X-ray diffraction, BET surface area measurement, SEM, and UV−vis diffuse reflectance spectroscopy. Doping with Pt(IV/II), Cr(III), V(III), and Fe(III) resulted in a lower anatase to rutile phase transformation (A−R phase transformation) temperature for the resultant TiO_2 particles, while doping with Ru(III) inhibited the A−R phase transformation. Metal-ion doping also resulted in a red shift of the photophysical response of TiO_2 that was reflected in an extended absorption in the visible region between 400 and 700 nm. In contrast, doping with Ag(I), Rb(I), Y(III), and La(III) did not result in a red shift of the absorption spectrum of TiO_2. As confirmed by elemental composition analysis by energy dispersive X-ray spectroscopy, the latter group of ions was unable to be substituted for Ti(IV) in the crystalline matrix due to their incompatible ionic radii. The photocatalytic activities of doped TiO_2 samples were quantified in terms of the photobleaching of methylene blue, the oxidation of iodide (I^(−)), and the oxidative degradation of phenol in aqueous solution both under visible-light irradiation (λ > 400 nm) and under broader-band UV−vis irradiation (λ > 320 nm). Pt- and Cr-doped TiO_2, which had relatively high percentages of rutile in the particle phase, showed significantly enhanced visible-light photocatalytic activity for all three reaction classes
Scalable Task-Based Algorithm for Multiplication of Block-Rank-Sparse Matrices
A task-based formulation of Scalable Universal Matrix Multiplication
Algorithm (SUMMA), a popular algorithm for matrix multiplication (MM), is
applied to the multiplication of hierarchy-free, rank-structured matrices that
appear in the domain of quantum chemistry (QC). The novel features of our
formulation are: (1) concurrent scheduling of multiple SUMMA iterations, and
(2) fine-grained task-based composition. These features make it tolerant of the
load imbalance due to the irregular matrix structure and eliminate all
artifactual sources of global synchronization.Scalability of iterative
computation of square-root inverse of block-rank-sparse QC matrices is
demonstrated; for full-rank (dense) matrices the performance of our SUMMA
formulation usually exceeds that of the state-of-the-art dense MM
implementations (ScaLAPACK and Cyclops Tensor Framework).Comment: 8 pages, 6 figures, accepted to IA3 2015. arXiv admin note: text
overlap with arXiv:1504.0504
The effect of silicon on the glass forming ability of the Cu47Ti34Zr11Ni8 bulk metallic glass forming alloy during processing of composites
Composites of the Cu47Ti34Zr11Ni8 bulk metallic glass, reinforced with up to 30 vol % SiC particles are synthesized and characterized. Results based on x-ray diffraction, optical microscopy, scanning Auger microscopy, and differential scanning calorimetry (DSC) are presented. During processing of the composites, a TiC layer forms around the SiC particles and Si diffuses into the Cu47Ti34Zr11Ni8 matrix stabilizing the supercooled liquid against crystallization. The small Si addition between 0.5 and 1 at. % increases the attainable maximum thickness of glassy ingots from 4 mm for Cu–Ti–Zr–Ni alloys to 7 mm for Cu–Ti–Zr–Ni–Si alloys. DSC analyses show that neither the thermodynamics nor the kinetics of the alloy are affected significantly by the Si addition. This suggests that Si enhances the glass forming ability by chemically passivating impurities such as oxygen and carbon that cause heterogeneous nucleation in the melt
Anti-correlated time lags in the Z source GX 5-1: Possible evidence for a truncated accretion disk
We investigate the nature of the inner accretion disk in the neutron star
source GX 5-1 by making a detailed study of time lags between X-rays of
different energies. Using the cross-correlation analysis, we found
anti-correlated hard and soft time lags of the order of a few tens to a few
hundred seconds and the corresponding intensity states were mostly the
horizontal branch (HB) and upper normal branch (NB). The model independent and
dependent spectral analysis showed that during these time lags the structure of
accretion disk significantly varied. Both eastern and western approaches were
used to unfold the X-ray continuum and systematic changes were observed in soft
and hard spectral components. These changes along with a systematic shift in
the frequency of quasi-periodic oscillations (QPOs) made it substantially
evident that the geometry of the accretion disk is truncated. Simultaneous
energy spectral and power density spectral study shows that the production of
the horizontal branch oscillations (HBOs) are closely related to the
Comptonizing region rather than the disk component in the accretion disk. We
found that as the HBO frequency decreases from the hard apex to upper HB, the
disk temperature increases along with an increase in the coronal temperature
which is in sharp contrast with the changes found in black hole binaries where
the decrease in QPO frequency is accompanied by a decrease in the disk
temperature and a simultaneous increase in the coronal temperature. We discuss
the results in the context of re-condensation of coronal material in the inner
region of the disk.Comment: 40 pages, 7 figures, accepted for publication in The Astrophysical
Journal Supplement (ApJS
Quantum Key Distribution Using Quantum Faraday Rotators
We propose a new quantum key distribution (QKD) protocol based on the fully
quantum mechanical states of the Faraday rotators. The protocol is
unconditionally secure against collective attacks for multi-photon source up to
two photons on a noisy environment. It is also robust against impersonation
attacks. The protocol may be implemented experimentally with the current
spintronics technology on semiconductors.Comment: 7 pages, 7 EPS figure
- …
