73,163 research outputs found
The assessment of metal fiber reinforced polymeric composites
Because of their low cost, excellent electrical conductivity, high specific strength (strength/density), and high specific modulus (modulus/density) short metal fiber reinforced composites have enjoyed a widespread use in many critical applications such as automotive industry, aircraft manufacturing, national defense, and space technology. However, little data has been found in the study of short metal fibrous composites. Optimum fiber concentration in a resin matrix and fiber aspect ratio (length-to-diameter ratio) are often not available to a user. Stress concentration at short fiber ends is the other concern when the composite is applied to a load-bearing application. Fracture in such composites where the damage will be initiated or accumulated is usually difficult to be determined. An experimental investigation is therefore carefully designed and undertaken to systematically evaluate the mechanical properties as well as electrical properties. Inconel 601 (nickel based) metal fiber with a diameter of eight microns is used to reinforce commercially available thermoset polyester resin. Mechanical testing such as tensile, impact, and flexure tests along with electrical conductivity measurements is conducted to study the feasibility of using such composites. The advantages and limitations of applying chopped metal fiber reinforced polymeric composites are also discussed
Improved Lignin Polyurethane Properties with Lewis Acid Treatment
Chemical modification strategies to improve the mechanical properties of lignin-based polyurethanes are presented. We hypothesized that treatment of lignin with Lewis acids would increase the concentration of hydroxyl groups
available to react with diisocyanate monomers. Under the conditions used, hydrogen bromide-catalyzed modification resulted in a 28% increase in hydroxyl group content. Associated increases in hydrophilicity of solvent-cast thin films were also recorded as evidenced by decreases in water contact angle. Polyurethanes were then prepared by first preparing a prepolymer based on mixtures of toluene-2,4-diisocyanate (TDI) and unmodified or modified lignin, then polymerization was completed through addition of polyethylene glycol (PEG), resulting in mass ratios of TDI:lignin:PEG of 43:17:40 in the compositions investigated
here. The mixture of TDI and unmodified lignin resulted in a lignin powder at the bottom of the liquid, suggesting it did not react directly with TDI. However, a homogeneous solution resulted when TDI and the hydrogen bromide-treated lignin were mixed, suggesting demethylation indeed increased reactivity and resulted in better integration of lignin into the urethane network. Significant improvements in mechanical properties of modified lignin polyurethanes were observed, with a 6.5-fold increase in modulus, which were attributed to better integration of the modified lignin into the covalent polymer network due to
the higher concentration of hydroxyl groups. This research indicates that chemical modification strategies can lead to significant improvements in the properties of lignin-based polymeric materials using a higher fraction of an inexpensive lignin monomer from renewable resources and a lower fraction an expensive, petroleum-derived isocyanate monomer to achieve the required material properties
Crossing Patterns in Nonplanar Road Networks
We define the crossing graph of a given embedded graph (such as a road
network) to be a graph with a vertex for each edge of the embedding, with two
crossing graph vertices adjacent when the corresponding two edges of the
embedding cross each other. In this paper, we study the sparsity properties of
crossing graphs of real-world road networks. We show that, in large road
networks (the Urban Road Network Dataset), the crossing graphs have connected
components that are primarily trees, and that the remaining non-tree components
are typically sparse (technically, that they have bounded degeneracy). We prove
theoretically that when an embedded graph has a sparse crossing graph, it has
other desirable properties that lead to fast algorithms for shortest paths and
other algorithms important in geographic information systems. Notably, these
graphs have polynomial expansion, meaning that they and all their subgraphs
have small separators.Comment: 9 pages, 4 figures. To appear at the 25th ACM SIGSPATIAL
International Conference on Advances in Geographic Information Systems(ACM
SIGSPATIAL 2017
A new flux conserving Newton's method scheme for the two-dimensional, steady Navier-Stokes equations
A new numerical method is developed for the solution of the two-dimensional, steady Navier-Stokes equations. The method that is presented differs in significant ways from the established numerical methods for solving the Navier-Stokes equations. The major differences are described. First, the focus of the present method is on satisfying flux conservation in an integral formulation, rather than on simulating conservation laws in their differential form. Second, the present approach provides a unified treatment of the dependent variables and their unknown derivatives. All are treated as unknowns together to be solved for through simulating local and global flux conservation. Third, fluxes are balanced at cell interfaces without the use of interpolation or flux limiters. Fourth, flux conservation is achieved through the use of discrete regions known as conservation elements and solution elements. These elements are not the same as the standard control volumes used in the finite volume method. Fifth, the discrete approximation obtained on each solution element is a functional solution of both the integral and differential form of the Navier-Stokes equations. Finally, the method that is presented is a highly localized approach in which the coupling to nearby cells is only in one direction for each spatial coordinate, and involves only the immediately adjacent cells. A general third-order formulation for the steady, compressible Navier-Stokes equations is presented, and then a Newton's method scheme is developed for the solution of incompressible, low Reynolds number channel flow. It is shown that the Jacobian matrix is nearly block diagonal if the nonlinear system of discrete equations is arranged approximately and a proper pivoting strategy is used. Numerical results are presented for Reynolds numbers of 100, 1000, and 2000. Finally, it is shown that the present scheme can resolve the developing channel flow boundary layer using as few as six to ten cells per channel width, depending on the Reynolds number
Lensed Arcs and Inner Structure of Abell 697
We present new optical observations of the z=0.282 cluster Abell 697 from the
Keck II telescope. Images show an unusual disturbed structure in the cD halo
and a previously unknown faint gravitational lens arc. A spectrum of the arc
did not yield a redshift, but its spectrum and colors suggest it lies at z>1.3.
We construct models to reproduce the arc that show the potential is likely to
be highly elliptical. We suggest that this cluster may have undergone a recent
merger and is in the process of forming its cD galaxy. Analysis of X-ray data
from ROSAT and ASCA suggests that the merging process is sufficiently advanced
that the gas in the cluster has relaxed, and A697 lies near the L_x-T_x
relation for normal clusters.Comment: LaTeX; 12 pages, 3 figures, submitted to ApJ Letter
Silicon nanowire devices
Transport measurements were carried out on 15–35 nm diameter silicon nanowires grown using SiH4 chemical vapor deposition via Au or Zn particle-nucleated vapor-liquid-solid growth at 440°C. Both Al and Ti/Au contacts to the wires were investigated. The wires, as produced, were essentially intrinsic, although Au nucleated wires exhibited a slightly higher conductance. Thermal treatment of the fabricated devices resulted in better electrical contacts, as well as diffusion of dopant atoms into the nanowires, and increased the nanowire conductance by as much as 10^4. Three terminal devices indicate that the doping of the wires is p type
- …
