1,652 research outputs found
Gauge invariance of parametrized systems and path integral quantization
Gauge invariance of systems whose Hamilton-Jacobi equation is separable is
improved by adding surface terms to the action fuctional. The general form of
these terms is given for some complete solutions of the Hamilton-Jacobi
equation. The procedure is applied to the relativistic particle and toy
universes, which are quantized by imposing canonical gauge conditions in the
path integral; in the case of empty models, we first quantize the parametrized
system called ``ideal clock'', and then we examine the possibility of obtaining
the amplitude for the minisuperspaces by matching them with the ideal clock.
The relation existing between the geometrical properties of the constraint
surface and the variables identifying the quantum states in the path integral
is discussed.Comment: 23 page
C IV BAL disappearance in a large SDSS QSO sample
Broad absorption lines (BALs) in the spectra of quasi-stellar objects (QSOs)
originate from outflowing winds along our line of sight; winds are thought to
originate from the inner regions of the QSO accretion disk, close to the
central supermassive black hole (SMBH). Winds likely play a role in galaxy
evolution and aid the accretion mechanism onto the SMBH. BAL equivalent widths
can change on typical timescales from months to years; such variability is
generally attributed to changes in the covering factor and/or in the ionization
level of the gas. We investigate BAL variability, focusing on BAL
disappearance. We analyze multi-epoch spectra of more than 1500 QSOs -the
largest sample ever used for such a study- observed by different programs from
the Sloan Digital Sky Survey-I/II/III (SDSS), and search for disappearing C IV
BALs. The spectra rest-frame time baseline ranges from 0.28 to 4.9 yr; the
source redshifts range from 1.68 to 4.27. We detect 73 disappearing BALs in the
spectra of 67 sources. This corresponds to 3.9% of disappearing BALs, and 5.1%
of our BAL QSOs exhibit at least one disappearing BAL. We estimate the average
lifetime of a BAL along our line of sight (~ 80-100 yr), which appears
consistent with the accretion disk orbital time at distances where winds are
thought to originate. We inspect properties of the disappearing BALs and
compare them to the properties of our main sample. We also investigate the
existence of a correlation in the variability of multiple troughs in the same
spectrum, and find it persistent at large velocity offsets between BAL pairs,
suggesting that a mechanism extending on a global scale is necessary to explain
the phenomenon. We select a more reliable sample of disappearing BALs following
Filiz Ak et al. (2012), where a subset of our sample was analyzed, and compare
the findings from the two works, obtaining generally consistent results.Comment: 22 pages, 9 figures. Accepted for publication in A&
Global phase time and path integral for the Kantowski--Sachs anisotropic univers
The action functional of the anisotropic Kantowski--Sachs cosmological model
is turned into that of an ordinary gauge system. Then a global phase time is
identified for the model by imposing canonical gauge conditions, and the
quantum transition amplitude is obtained by means of the usual path integral
procedure of Fadeev and Popov.Comment: 11 page
Pressure-induced amorphization and polyamorphism in one-dimensional single crystal TiO2 nanomaterials
The structural phase transitions of single crystal TiO2-B nanoribbons were
investigated in-situ at high-pressure using the synchrotron X-ray diffraction
and the Raman scattering. Our results have shown a pressure-induced
amorphization (PIA) occurred in TiO2-B nanoribbons upon compression, resulting
in a high density amorphous (HDA) form related to the baddeleyite structure.
Upon decompression, the HDA form transforms to a low density amorphous (LDA)
form while the samples still maintain their pristine nanoribbon shape. HRTEM
imaging reveals that the LDA phase has an {\alpha}-PbO2 structure with short
range order. We propose a homogeneous nucleation mechanism to explain the
pressure-induced amorphous phase transitions in the TiO2-B nanoribbons. Our
study demonstrates for the first time that PIA and polyamorphism occurred in
the one-dimensional (1D) TiO2 nanomaterials and provides a new method for
preparing 1D amorphous nanomaterials from crystalline nanomaterials.Comment: 4 figure
Optically variable active galactic nuclei in the 3 yr VST survey of the COSMOS field
The analysis of the variability of active galactic nuclei (AGNs) at different
wavelengths and the study of possible correlations among different spectral
windows are nowadays a major field of inquiry. Optical variability has been
largely used to identify AGNs in multivisit surveys. The strength of a
selection based on optical variability lies in the chance to analyze data from
surveys of large sky areas by ground-based telescopes. However the
effectiveness of optical variability selection, with respect to other
multiwavelength techniques, has been poorly studied down to the depth expected
from next generation surveys. Here we present the results of our r-band
analysis of a sample of 299 optically variable AGN candidates in the VST survey
of the COSMOS field, counting 54 visits spread over three observing seasons
spanning > 3 yr. This dataset is > 3 times larger in size than the one
presented in our previous analysis (De Cicco et al. 2015), and the observing
baseline is ~8 times longer. We push towards deeper magnitudes (r(AB) ~23.5
mag) compared to past studies; we make wide use of ancillary multiwavelength
catalogs in order to confirm the nature of our AGN candidates, and constrain
the accuracy of the method based on spectroscopic and photometric diagnostics.
We also perform tests aimed at assessing the relevance of dense sampling in
view of future wide-field surveys. We demonstrate that the method allows the
selection of high-purity (> 86%) samples. We take advantage of the longer
observing baseline to achieve great improvement in the completeness of our
sample with respect to X-ray and spectroscopically confirmed samples of AGNs
(59%, vs. ~15% in our previous work), as well as in the completeness of
unobscured and obscured AGNs. The effectiveness of the method confirms the
importance to develop future, more refined techniques for the automated
analysis of larger datasets.Comment: 21 pages, 10 figures; accepted for publication in A&
First measurement of the K−n →Λπ−non-resonant transition amplitude below threshold
We present the analysis of K−absorption processes on He4 leading to Λπ−final states, measured with the KLOE spectrometer at the DAΦNE e+e−collider and extract, for the first time, the modulus of the non-resonant K−n →Λπ−direct production amplitude about 33 MeV below the K‾N threshold. This analysis also allows to disentangle the K−nuclear absorption at-rest from the in-flight capture, for K−momenta of about 120 MeV. The data are interpreted with the help of a phenomenological model, and the modulus of the non-resonant K−n →Λπ−amplitude for K−absorption at-rest is found to be |AK−n→Λπ−|=(0.334±0.018stat−0.058+0.034syst)fm
Prognostic factors in Krukenberg tumor
BACKGROUND:
Krukenberg tumor (KT) is a rare secondary ovarian tumor. Little is known about clinicopathologic factors affecting prognosis in KT.
OBJECTIVE:
To assess the prognostic value of clinicopathologic factors in KT through a systematic review and meta-analysis.
METHODS:
Electronic databases were searched from their inception to February 2019 for studies assessing the association of clinicopathologic factors with overall survival in KT. Pooled hazard ratio (HR) was calculated for each factor; a p value < 0.05 was considered significant.
RESULTS:
Twenty-three studies with 1743 patients were included. A decreased overall survival was significantly associated with peritoneal involvement (HR 1.944; p = 0.003), ascites (HR 2.055; p = 0.034), synchronous presentation (HR 1.679; p = 0.034) and increased serum CEA levels (HR 1.380; p = 0.010), but not with age > 50 (HR 0.946; p = 0.743), menopausal status (HR 1.565; p = 0.204), gastric origin (HR 1.600; p = 0.201), size > 5 cm (HR 1.292; p = 0.119), size > 10 cm (HR 0.925; p = 0.714), bilateral ovarian involvement (HR 1.113; p = 0.347), non-peritoneal extaovarian metastases (HR 1.648; p = 0.237), liver metastases (HR 1.118, p = 0.555), predominant signet ring cell morphology (HR 1.322; p = 0.208) and levels of CA125 (HR 0.933; p = 0.828) and CA19.9 (HR 0.996; p = 0.992).
CONCLUSION:
Peritoneal involvement, synchronous presentation, ascites and increased serum CEA levels appear as unfavorable prognostic factors in KT and might affect the patient management
Free electron laser-driven ultrafast rearrangement of the electronic structure in Ti
High-energy density extreme ultraviolet radiation delivered by the FERMI seeded free-electron laser has been used to create an exotic nonequilibrium state of matter in a titanium sample characterized by a highly excited electron subsystem at temperatures in excess of 10 eV and a cold solid-density ion lattice. The obtained transient state has been investigated through ultrafast absorption spectroscopy across the Ti M2,3-edge revealing a drastic rearrangement of the sample electronic structure around the Fermi level occurring on a time scale of about 100 fs
Phonons and related properties of extended systems from density-functional perturbation theory
This article reviews the current status of lattice-dynamical calculations in
crystals, using density-functional perturbation theory, with emphasis on the
plane-wave pseudo-potential method. Several specialized topics are treated,
including the implementation for metals, the calculation of the response to
macroscopic electric fields and their relevance to long wave-length vibrations
in polar materials, the response to strain deformations, and higher-order
responses. The success of this methodology is demonstrated with a number of
applications existing in the literature.Comment: 52 pages, 14 figures, submitted to Review of Modern Physic
Precision measurement of the Dalitz plot distribution with the KLOE detector
Using fb of data collected with
the KLOE detector at DANE, the Dalitz plot distribution for the decay is studied with the world's largest sample of events. The Dalitz plot density is parametrized as a polynomial
expansion up to cubic terms in the normalized dimensionless variables and
. The experiment is sensitive to all charge conjugation conserving terms of
the expansion, including a term. The statistical uncertainty of all
parameters is improved by a factor two with respect to earlier measurements.Comment: 11 pages, 9 figures, supplement: an ascii tabl
- …
