3,164 research outputs found
Engineering model 8-cm thruster subsystem
An Engineering Model (EM) 8 cm Ion Thruster Propulsion Subsystem was developed for operation at a thrust level 5 mN (1.1 mlb) at a specific impulse 1 sub sp = 2667 sec with a total system input power P sub in = 165 W. The system dry mass is 15 kg with a mercury-propellant-reservoir capacity of 8.75 kg permitting uninterrupted operation for about 12,500 hr. The subsystem can be started from a dormant condition in a time less than or equal to 15 min. The thruster has a design lifetime of 20,000 hr with 10,000 startup cycles. A gimbal unit is included to provide a thrust vector deflection capability of + or - 10 degrees in any direction from the zero position. The EM subsystem development program included thruster optimization, power-supply circuit optimization and flight packaging, subsystem integration, and subsystem acceptance testing including a cyclic test of the total propulsion package
Gas hydrate concentration estimates from chlorinity, electrical resistivity and seismic velocity
Gas hydrate beneath the N. Cascadia continental slope off Vancouver Island occurs as a regional diffuse layer above the BSR and as local high concentrations in large vent or upwelling structures. Regional concentrations of gas hydrate beneath the N. Cascadia continental slope off Vancouver Island have been estimated earlier using multichannel seismic, seafloor electrical, and IODP Leg 146 downhole data. The concentrations of between 15 and 30% of pore saturation in a 100 m thick layer above the BSR are much higher than estimated elsewhere where there is good data, especially the Blake Ridge and central Cascadia off Oregon on ODP Leg 204. Although both of these other studies involved different sediment environments, a careful re-evaluation of the N. Cascadia estimates seemed desirable. We have re-evaluated the methods used to calculate the gas hydrate concentrations from pore-water chlorinity (salinity), electrical resistivity, and seismic velocity, describing in detail the assumptions and uncertainties. Use of the pore-water chlorinity/salinity and electrical resistivity directly have low reliability because of the effect on the no-hydrate reference of hydrate formation and dissociation, and the effect of pore fluid freshening by clay dehydration. At ODP Site 889/890 hydrate concentrations range from 5–10% to 30–40%, depending on the no-hydrate reference salinity used. Use of core salinity data along with the downhole and seafloor electrical resistivity data allows calculation of both the in situ reference salinity and the hydrate concentrations. The most important uncertainty in this method is the relation between resistivity and porosity, i.e., Archie’s Law parameters. Significantly different relations were determined from the ODP Leg 146 core and downhole log data, the log data resistivity-porosity relation giving much lower concentrations. Finally, seismic velocities from sonic-logs and multichannel data can be used to calculate gas hydrate concentrations, if an appropriate no-hydrate velocity-depth profile can be estimated. A velocity-hydrate concentration relation is also required. Depending on which no-hydrate/no-gas velocity baseline is used, estimated hydrate concentrations range from as low as 5% to above 25% saturation. In spite of having three nearly independent methods of estimating hydrate concentrations, it is concluded that the data allow regional concentrations in the 100 m layer above the BSR from less than 5% to over 25% saturation (3-13% of sediment volume). ODP drilling in the region scheduled for the fall of 2005 should help resolve the uncertainties
Quantum-state input-output relations for absorbing cavities
The quantized electromagnetic field inside and outside an absorbing high-
cavity is studied, with special emphasis on the absorption losses in the
coupling mirror and their influence on the outgoing field. Generalized operator
input-output relations are derived, which are used to calculate the Wigner
function of the outgoing field. To illustrate the theory, the preparation of
the outgoing field in a Schr\"{o}dinger cat-like state is discussed.Comment: 12 pages, 5 eps figure
Separating Reflection and Transmission Images in the Wild
The reflections caused by common semi-reflectors, such as glass windows, can
impact the performance of computer vision algorithms. State-of-the-art methods
can remove reflections on synthetic data and in controlled scenarios. However,
they are based on strong assumptions and do not generalize well to real-world
images. Contrary to a common misconception, real-world images are challenging
even when polarization information is used. We present a deep learning approach
to separate the reflected and the transmitted components of the recorded
irradiance, which explicitly uses the polarization properties of light. To
train it, we introduce an accurate synthetic data generation pipeline, which
simulates realistic reflections, including those generated by curved and
non-ideal surfaces, non-static scenes, and high-dynamic-range scenes.Comment: accepted at ECCV 201
Demonstration of an optical polarization magnifier with low birefringence
In any polarimetric measurement technique, enhancing the laser polarization
change of a laser beam before it reaches the analyzer can help in improving the
sensitivity. This can be performed using an optical component having a large
linear dichroism, the enhancement factor being equal to the square root of the
ratio of the two transmission factors. A pile of parallel plates at Brewster
incidence looks appropriate for realizing such a polarization magnifier. In
this paper, we address the problem raised by the interference in the plates and
between the plates, which affects the measurement by giving rise to
birefringence. We demonstrate that wedged plates provide a convenient and
efficient way to avoid this interference. We have implemented and characterized
devices with 4 and 6 wedged plates at Brewster incidence which have led to a
decisive improvement of the signal to noise ratio in our ongoing Parity
Violation measurement.Comment: 08 october 200
Cloud water chemistry in Sequoia National Park
Interception of cloudwater by forests in the Sierra Nevada Mountains may contribute significantly to acidic deposition in the region. Cloudwater sampled in Sequoia National Park had pH values ranging from 4.4 to 5.7. The advance of cold fronts into the Park appears to lead to higher aerosol and gas phase concentrations than are seen under normal mountain-valley circulations, producing higher cloud-water concentrations than might otherwise be expected. Estimates of annual deposition rates of NO_3^−, SO_4^(2−), NH_4^+ and H^+ due to cloudwater impaction are comparable to those measured in precipitation
Achromatizing a liquid-crystal spectropolarimeter: Retardance vs Stokes-based calibration of HiVIS
Astronomical spectropolarimeters can be subject to many sources of systematic
error which limit the precision and accuracy of the instrument. We present a
calibration method for observing high-resolution polarized spectra using
chromatic liquid-crystal variable retarders (LCVRs). These LCVRs allow for
polarimetric modulation of the incident light without any moving optics at
frequencies >10Hz. We demonstrate a calibration method using pure Stokes input
states that enables an achromatization of the system. This Stokes-based
deprojection method reproduces input polarization even though highly chromatic
instrument effects exist. This process is first demonstrated in a laboratory
spectropolarimeter where we characterize the LCVRs and show example
deprojections. The process is then implemented the a newly upgraded HiVIS
spectropolarimeter on the 3.67m AEOS telescope. The HiVIS spectropolarimeter
has also been expanded to include broad-band full-Stokes spectropolarimetry
using achromatic wave-plates in addition to the tunable full-Stokes
polarimetric mode using LCVRs. These two new polarimetric modes in combination
with a new polarimetric calibration unit provide a much more sensitive
polarimetric package with greatly reduced systematic error.Comment: Accepted in PAS
- …
